Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/1181
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDATTA, Saibal-
dc.date.accessioned2017-07-14T06:25:19Z-
dc.date.available2017-07-14T06:25:19Z-
dc.date.issued2016-12-10-
dc.identifier.isbn978 -93-86171-12-2-
dc.identifier.urihttp://hdl.handle.net/123456789/1181-
dc.description.abstractThis paper describes an automatic classification system based on combination of cross-wavelet and Learning Vector Quantization (LVQ) for the purpose of automatic heartbeat detection. The feature extractor is based on cross-wavelet approach, using the time frequency information. The ANN classifier uses a Learning Vector Quantization (LVQ) method which classifies the ECG beats into two categories: normal beats and abnormal beats. The ECG (electrocardiogram) signals in the MIT-BIH arrhythmia database are adopted as reference data. Total 98530 heart beats are used for testing the above classifier. The total classification accuracy (TCA) was about 91.66%.en_US
dc.language.isoenen_US
dc.subjectPublicationsen_US
dc.subjectCross-Wavelet Spectrumen_US
dc.subjectCross-Wavelet Coherence Spectrumen_US
dc.subjectLVQen_US
dc.subjectSaibal Duttaen_US
dc.titleECG Beat Classification Using Cross-Wavelet And LVQen_US
dc.typeArticleen_US
Appears in Collections:Electrical Engineering (Publications)

Files in This Item:
File Description SizeFormat 
IC3_ECG BEAT CLASSIFICATION USING CROSS-WAVELET AND LVQ.pdf577.8 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.