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ABSTRACT  

This paper describes an automatic classification system based on combination of cross-wavelet and Learning Vector 

Quantization (LVQ) for the purpose of automatic heartbeat detection. The feature extractor is based on cross-

wavelet approach, using the time frequency information. The ANN classifier uses a Learning Vector Quantization 

(LVQ) method which classifies the ECG beats into two categories: normal beats and abnormal beats. The ECG 

(electrocardiogram) signals in the MIT-BIH arrhythmia database are adopted as reference data. Total 98530 heart 

beats are used for testing the above classifier. The total classification accuracy (TCA) was about 91.66%. 
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I INTRODUCTION 

The electrocardiogram (ECG) is the recording of the electrical property of the heartbeats, and has become one of the 

most important tools in the diagnosis of heart diseases. Due to the high death rate of heart diseases, early detection 

and precise discrimination of ECG arrhythmia is essential for the treatment of patients. This requisite contributes to 

intensive studies in recent years for high-precision computer-aided diagnosis (CAD) systems for ECG. An effective 

CAD system requires a powerful pattern classifier as well as a graceful feature extractor that is capable of extracting 
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important, yet usually hidden, information from the raw data. Even more important is the mixing of suitable feature 

extractor and pattern classifier such that they can operate in coordination to make an effective and efficient CAD 

system. Statistical features [2], time-domain features [3, 4] and cross-correlation based frequency–domain features 

[5, 6] were used by different researchers for features extraction. In [7, 8], wavelet transform were used for features 

extraction, and the authors of [9] used Lyapunov exponents for the same purpose. For classification purpose 

different classifier [2 ,3, 5, 6] were used by the researchers. 21 features vector are extracted from cross-wavelet and 

cross-wavelet coherence spectrum. In this paper ,LVQ classifier is used for classify normal and abnormal beats. 

A brief of the topics on which the different sections are concerned is given as follows. In section 2 information about 

ECG datasets used in our work is given. Section 3 gives an idea of cross-wavelet transform of two time domain 

signals. Section 4 deals with the idea of Learning Vector Quantization and how it works. Performance of the 

classifier scheme is shown in section 5. Section 6 describes the results obtained in this work and future research 

scope using EEG signal. 

 

II THE ACQUISITION OF ECG SIGNALS 

 

For the analysis of cardiovascular disorders, freely available benchmark ECG signals from the MIT/BIH arrhythmia 

database [1] have been utilized. This database enables researchers all over the world, to test the performance of their 

arrhythmia analysis algorithms against other competing algorithms, utilizing identical benchmark signals. The 

database contains 48 numbers of half-hour excerpts of two channel ambulatory ECG recording files, obtained from 

47 different patients. Out of these 48 files, 23 recordings were randomly chosen and the remaining 25 files included 

less common but clinically significant and threatening arrhythmic heartbeat samples. The recordings were digitized 

with a sampling frequency of 360 Hz and acquired with 11-bit resolution over 10 mV ranges. Two or more 

cardiologists annotated each record of MIT/BIH arrhythmia database independently, with respect to both timing 

information and beat classification. The proposed algorithm has used the annotation to locate beats in ECG signals 

for the classification of heart beats. This work has not been directed towards beat detection because several highly 

accurate beat detection algorithms are already available in the literature. In the proposed algorithm, each ECG beat 

was extracted by selecting a window of -300 ms to 400 ms around the R-wave as found in the database annotation. 

Each such one dimensional signal vector comprises 252 samples. For beat extraction, first and last beat of each file 

is not considered in this work because 252 samples around the R-wave may not be present in first and last beat of 

each file [11]. 

A 6
th

 order Butterworth band pass filter with pass band frequencies between 0.4 to 0.7 Hz is used to remove baseline 

wander from ECG signals. Fig.1 shows the ECG signal before and after removing the 

base-line wander. 
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Fig.1 ECG signals with and without baseline wander 

III OVERVIEWS OF WAVELET TRANSFORM 

 

 CWT is a common tool for analyzing localized intermittent oscillations in a time series; it is very often desirable to 

examine two time series together that may be expected to be linked in some way. In particular, to examine whether 

regions in time frequency space with large common power have a consistent phase relationship and therefore are 

suggestive of causality between the time series. Many ECG (time series) signal are not normally distributed and we 

suggest methods of applying the CWT to such time series. From two CWTs we construct the Cross Wavelet 

Transform (XWT) which will expose their common power and relative phase in time-frequency space. We will 

further define a measure of Wavelet Coherence (WTC) between two CWT, which can find significant coherence 

even though the common power is low, and show how confidence levels against red noise backgrounds are 

calculated.     

3.1. Cross-wavelet and wavelet coherence 

The cross-wavelet transform of two time series  and  is defined as  = , where * denote complex 

conjugate .  is the cross-wavelet power. The complex argument arg (  can be interpreted as the local 

relative phase between and  in time frequency space. The theoretical distribution of the cross wavelet power of 

two time series with background power spectra  is given in Torrence and Compo (1998) [10]. 

          Another useful measure is how coherent the cross wavelet transform is in time frequency space. Following 

Torrence and Webster (1998) we define the wavelet coherence of two time series as  

          (1)  
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          where S is a smoothing 

operator.  Sample = 252
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Fig.2 Wavelet cross spectrum of Normal and Abnormal beat 

 Sample = 252

S
c
a
le

Squared wavelet coherence between Normal & Abnormal Beat

50 100 150 200 250

 4

 8

16

32

64

0

0.2

0.4

0.6

0.8

1

 

Fig.3 Squared wavelet coherence between Normal & Abnormal Beat Fig. 2 and Fig. 3 show the Wavelet 

cross-spectrum and squared cross-wavelet coherence. These are used for cross examination single normal with 

arrhythmia beat. These figures also show the distinguishing regions where two signal are locally similar in time & 

frequency space. It is evident from the gray-shed plots that there exist distinct variations in the spectral and 

coherence components. By inspecting the plots, it has been found that most prominent variation observed in the 

range of 4 to 64scales of the wavelet coefficients [11]. 

After applying cross-wavelet transform we have taken 21 features. These features are sufficient for the classification 

of normal and arrhythmia beat. 
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IV LEARNING VECTOR QUANTIZATION 

Learning Vector Quantization (LVQ) has been  introduced by T. Kohonen [12] as a simple, universal and efficient 

classification algorithm and has since found many applications and extensions [13].The presented work employs 

Learning Vector Quantization (LVQ) algorithms for the purpose of classification of ECG beats. LVQ is a supervised 

version of vector quantization that can be used when we have labelled input data. This learning technique uses the 

class information to reposition the Voronoi vectors slightly, so as to improve the quality of the classifier decision 

regions. It is a two stage process – a SOM followed by LVQ. LVQ is a local classification algorithm, where the 

classification boundaries are approximated locally. The difference is that instead of using all the points in the 

training dataset, LVQ uses only a set of appropriately chosen prototype vectors. This way the classification method 

is much more efficient, because the number of vectors that should be stored and compared with is significantly 

reduced. In addition, a carefully chosen prototype set can greatly increase classification accuracy on noisy problems. 

There are several different LVQ algorithms that deal with the updates of the prototypes in different 

ways.  

 Fig. 4 Architecture of LVQ classifier 

In our proposed approach, the optimized learning rate LVQ1 and LVQ2.1 algorithms have been used for training 

and fine-tuning purposes respectively [14,15]. 

LVQ network has a first competitive layer and a second linear layer. The linear layer transforms the competitive 

layer’s classes into target classifications defined by the user. Both the competitive and linear layers have one neuron 

per (sub or target) class. Thus, the competitive layer can learn up to S
1
 subclasses. These, in turn, are combined by 

the linear layer to form S
2
 target classes. (S

1
 is always larger than S

2
.) In Fig.4 P is input vector with R elements and 

IW1,1 is the weights matrix of neurons in competitive layer . Each row in this matrix is the weights of one neuron. 

||ndist|| block computes the distance of input vector P from weight vectors of each neuron. Thus if the number of 

competitive layer neurons were S1, then IW1,1 is S1 by R matrix. In this case the ||ndist|| output, that determined by 

n1 in figure, is an s1 element vector that each element is the distance of input to one neuron. The C block is a 

competitive function that its output (a1) is a vector with one element equal 1 and others equal 0. The element that 

equals 1, determines the input subclass. In linear layer, the target class is determined. The neurons number in linear 

layer is equal to target class’s number. The LW2,1 block with elements equal to 1 or 0, is the neurons weight matrix 
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in linear layer. This layer determines the subclasses of each target class. In LVQ1, for a given M-dimensional input 

vector p, an M-dimensional code word wk is found such that  

       (2) 

The code word is then updated as follows: 

  (3) 

Where s(t)=+1 if p and  are in same class and s(t)=-1, otherwise;  is the time varying learning rate. The other 

code words in the code book remain unchanged. LVQ2.1 applied after first applying LVQ1. It can improve the 

result of the first learning. In LVQ2.1 algorithm, two vectors of layer 1 that are closest to the input vector can be 

updated, provided that one belongs to the correct class and one belongs to a wrong class, and further provided that 

the input falls into a "window" near the midplane of the two vectors. The window is defined by 

   

where di and dj are the Euclidean distances of p from wi and . Here each M-dimensional p and wk vectors can be 

denoted as: p = {p1, p2, ..., pm, ..., pM} and wk = {wk1, wk2, ..., wkm, ..., wkM}.  

In this work LVQ classifier is used to classify normal and abnormal beats of ECG signal. Usually the classification 

results obtained with LVQ2.1 algorithm are more robust than with LVQ1 algorithm. The usual practice is to employ 

the LVQ2.1 algorithm after the LVQ1 algorithm has been implemented. 

 

V PERFORMANCE EVALUATIONS 

The training dataset contains 815 normal beats and 815 arrhythmia beats. Total 98530 heart beats are tested from 43 

files. Less than 2% of total heart beats 

are used for train the classifier. Heart beat in file #100_19 is taken as reference normal heart beat. The total accuracy 

of the classifier for each record is determined using the following formula:  

TCA =  

=  

Where (true positive) denote the total number of heart beats that are correctly classified (normal as well as 

arrhythmia), and represent the total number of heart beats present in each record. 

The classifier was tested by taking 7, 14, 18 and 21 features, and corresponding results are shown in table.1 
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The total accuracy obtained with 14 features vector is 91.66%. Using the same features vector, classified normal 

beat accuracy and classified arrhythmia beat accuracy are found to be 94.72% and 84.05% respectively. 

Classification result as shown in table.2 

Table.1 Maximum classified normal and 

 Arrhythmia beat based on different feature sets 

Feature 

set 

Total 

classification 

Accuracy 

(TCA)% 

% of 

Classified 

Normal Beat 

% of Classified 

Arrhythmia 

Beat 

 

89.399 91.9 83.68 

14 91.65 94.72 84.05 

18 88.29 88.44 87.89 

21 96.66 90.24 87.23 

 

Table. 2: Classified normal and abnormal beats using 

 14 feature vectors 

File 
 Total 

Beats 

 

Accuracy(%) 

 

Normal 

Beats 

  

Classified 

normal 

 

Abnormal 

Beats 

  

Classified 

Abnormal 

a100 2270 98.55 2236 2236 34 1 

a101 1863 99.62 1858 1855 5 1 

a102 2185 98.95 99 93 2086 2069 

a103 2082 99.90 2080 2080 2 0 

a104 2209 78.45 163 163 2046 1570 

a105 2570 93.77 2524 2406 46 4 

a106 2026 90.28 1506 1505 520 324 

a107 2135 99.77 0 0 2135 2130 

a108 1761 10.56 1738 172 23 14 

a109 2530 99.76 0 0 2530 2524 

a112 2537 94.25 2535 2390 2 1 

a113 1793 99.67 1787 1787 6 0 

a114 1877 94.73 1818 1730 59 48 

a115 1943 100.00 1943 1943 0 0 

a116 2410 99.09 2300 2290 110 98 

a117 1533 95.17 1532 1459 1 0 

a118 2276 99.56 0 0 2276 2266 

a119 1985 100.00 1541 1541 444 444 

a121 1861 66.42 1859 1235 2 1 

a122 2474 99.96 2474 2473 0 0 

a123 1515 100.00 1512 1512 3 3 

a124 1617 63.51 0 0 1617 1027 

a200 2597 96.42 1742 1731 855 773 

a201 1961 96.94 1623 1621 338 280 

a202 2134 97.84 2059 2058 75 30 
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a203 2978 63.57 2527 1694 451 199 

a205 2654 98.94 2569 2569 85 57 

a207 1858 94.73 0 0 1858 1760 

a208 2951 90.34 1585 1567 1366 1099 

a209 3003 87.21 2619 2618 384 1 

a210 2638 95.30 2421 2412 217 102 

a213 2897 98.55 2639 2638 258 217 

a215 3361 95.03 3193 3136 168 58 

a217 2206 92.57 244 243 1962 1799 

a219 2152 99.07 2080 2077 72 55 

a220 2046 95.41 1952 1952 94 0 

a221 2425 99.34 2029 2029 396 380 

a222 2481 76.10 2060 1886 421 2 

a223 2603 89.86 2027 2009 576 330 

a228 2051 98.78 1686 1679 365 347 

a230 2254 99.91 2253 2251 1 1 

a233 3077 95.22 2229 2110 848 820 

a234 2751 98.18 2698 2698 53 3 

Total 

Beat 98530 

 

73740 69848 24790 20838 

Accuracy:           91.65% 

    Classified Normal beats:  

94.722% 

    Classified Abnormal beats: 

84.05%         

 

VI CONCLUSION 

In this paper, the LVQ neural network and the cross-wavelet Transform have been used to distinguish normal and 

arrhythmia beats. The performance of the proposed scheme has been tested using benchmark signals available in 

MIT/BIH arrhythmia database, where a small sized training file and large-sized testing file was used to demonstrate 

the generalization capability of the system, when presented with unknown inputs. An overall classification accuracy 

of 91.66% was achieved over the 43 files of the database. Future work can be done by classifying all the beats in the 

manner recommended by Association for the Advancement of Medical Instrumentation (AAMI) of the dataset 

instead of binary classification. 
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