Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/1800
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Dipankar-
dc.contributor.authorChakraborty, Arijit-
dc.contributor.authorMitra, Avik-
dc.date.accessioned2018-03-14T06:31:39Z-
dc.date.available2018-03-14T06:31:39Z-
dc.date.issued2014-02-
dc.identifier.issn2229-5518-
dc.identifier.urihttp://hdl.handle.net/123456789/1800-
dc.description.abstractIn this paper we have used curve fitting technique for analyzing the classical Quicksort algorithm and its performance in worst case on personal computer. The proposed generic model can be viewed as: Time ~ f (Number of Elements). We fit the data points (Time vs Number of elements) in twenty one different models from various types of fit such as Polynomial, Exponential, Power, Gaussian and Fourier. This analysis leads us to identify the best model amongst these models. We found that a model of Fourier series is the best fit.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVolume 5;Issue 2-
dc.subjectCurve Fittingen_US
dc.subjectFourier Fiten_US
dc.subjectExperimental Algorithmicsen_US
dc.subjectGraphical Residual Analysisen_US
dc.subjectperformance analysisen_US
dc.subjectQuicksorten_US
dc.subjectworst caseen_US
dc.titleSample Based Curve Fitting Computation on the Performance of Quicksort in Personal Computeren_US
dc.title.alternative(In) International Journal of Scientific & Engineering Researchen_US
dc.typeArticleen_US
Appears in Collections:BCA

Files in This Item:
File Description SizeFormat 
QuickSort.pdf803.23 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.