				M.TECH/ECE(VLSI)/1 st SEM/VLSI 5131/2016				
M.TECH/ECE(VLSI)/1 ^{sr} SEM/VLSI 5131/2016 EMBEDDED SYSTEMS (VLSI 5131)			(viii)	(viii) An embedded system must have(a) hard disk(c) operating system		(b) processor and memory (d) processor and I/O units.		
Time Allotted : 3 hrsFull Marks : 70			(ix)	 (ix) UART device (a) receives parallel data and stores as parallel data (b) receives serial data and stores as serial data (c) receives serial data and stores as parallel data (d) receives parallel data and stores as serial data. 				
Figures out of the right margin indicate full marks.								
Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.								
Candidates are required to give answer in their own words as far as practicable.				(x)	 (x) Which pin of port 3 has an alternative function as wri signal for external data memory? (a) P3.8 (b) P3.3 (c) P3.6 		Inction as write contro P3.6 (d) P3.2	•ol .1.
Group – A (Multiple Choice Type Questions)					Group – B			
1. Choos (i)	 Choose the correct alternative for the following: 10 × 1 = 10 SOC means 			2. (a)	Classify Embedded System. Write down some application area of Embedded System. Give an example of an Embedded System with its block diagram.			
(a) Multiple programs on chip(b) a system distributed in different chips(c) A partially filled system in a chip(d) A single chip that would realize the entire system.			(b)	What do you mean by Design Metric? What are the design metrics to design an embedded system? $(2 + 2 + 4) + (1 + 2) = 12$				
				(2 + 2 + 4) + (1 + 3) = 12				
(ii)	The number of active elements (a) 1 (b) 2	in a DRAM cell is (c) 6	(d) 9.	3. (a)	Explain Full Custom IC d with PLD.	esign, Semi Custom	ASIC design, and desig	gn
(iii)	DMA can be used to transfer data directly between memory and a(a) peripheral unit(b) flipflop(c) counter(d) register.			(b)	Discuss their pros and cons. Use examples to show how a processor technology can be applied efficiently to a technique. 6+6=12			
(iv)	ARM Processors are designed to meet the needs of				Group – C			
	(c) cache (d) multi u		al memory user.	4. (a)	Compare General purpose, single purpose and application specifi			fic
(v)	In Harvard Architecture, to access program and data memory				processor.			
 (a) same bus is used (b) separate address bus and separate data bus is used (c) separate address bus but same data bus is used (d) same address bus but separate data bus is used. 			(b)	What are the various operations present in RTL language? Represent the RTL statement, conditional statement and concurrent conditional statement for information transfer from one register to another. Do as directed: I. Obtain the circuit diagram from the RTL				
(vi)	The Logic family which takes th (a) TTL (b) ECL	e least power is (c) RTL	(d) CMOS.		code if s=1 then R0 \leftarrow R1 else R0 \leftarrow R2. II. Obtain the RTL code for a 3- 8 decoder.			
(vii)	The Logic family which is fastes (a) TTL (b) ECL	t is (c) RTL	(d) CMOS.				7 + (2 + 4 + 2) = 1	. 4
VLSI 5131	1			VLSI 5131		2		

M.TECH/ECE(VLSI)/1st SEM/VLSI 5131/2016

- 5. (a) Sketch a communication diagram between CPU and the memory and I/O devices of a computer system, and briefly explain the function of interfacing unit between CPU and the devices.
 - (b) Give the main reasons why DMA based I/O is better in some circumstances than interrupt driven I/O.
 - (c) What is programmed I/O? Why is it not very useful compared to DMA?
 - (d) Where does DMA mode of data transfer finds its use?

5 + 3 + 2 + 2 = 12

Group - D

- 6. (a) Discuss about the interrupts in the 8051 microcontroller. Describe the Timer Mode Control Register of 8051.
 - (b) Write a program to generate 2 KHz square wave on pin P1.0 of port 1 of 8051 microcontroller using interrupt.

(5+3)+4=12

- 7. (a) Define the range of numbers possible in 8051 unsigned data.
 - (b) List the timers of the 8051 and their associated registers.
 - (c) Describe the two modes of the 8051 timers with examples.

2 + 4 + 6 = 12

Group – E

- 8. (a) Explain how a Keypad module can be interfaced with any embedded processor.
 - (b) Describe the interfacing of a Flash type A/D Converter with an 8-bit processor.

6 + 6 = 12

- 9. (a) Explain the SRAM and DRAM. Compare their characteristics in terms of Reading and Writing.
 - (b) What is cache mapping? Design a direct cache mapping scheme with main memory size of 16 Mbyte with word size of 16 bits. The Cache size is 16K lines. Each cache line can hold a main memory word plus the tag bits.

6 + 6 = 12