M.TECH/ECE(VLSI)/1ST SEM/VLSI 5102/2016

DIGITAL IC DESIGN (VLSI 5102)

1

VLSI 5102

(VLSI 5102)					(x)	Stick Diagram representsof design.
Time Allotted: 3 hrs			Full Marks: 70		()	(a) logic (b) circuit (c) layout (d) architecture.
Figures out of the right margin indicate full marks.						Creary B
	any !	Candidates are required to answer <u>5 (five)</u> from Group B to E, taking <u>at leas</u>	-	2.	(a)	Group - B Draw Circuit Diagram of a D-Latch using CMOS Transmission Gate
Candidates are required to give answer in their own words as far as practicable. Group – A (Multiple Choice Type Questions)					(b)	(TG). Draw Circuit Diagram of a Negative Edge Triggered D-Flip Flop using
					(c)	D-Latch. Draw Circuit Diagram of 2 input XOR gate using CMOS Logic.
1.	Choose	e the correct alternative for the following:	-		(d)	Draw Circuit Diagram of 2 input XOR gate using CMOS Transmission Gate (TG).
	(i)	Ideal Current Source has Resistance of value				3 + 3 + 3 + 3 = 12
		(a) 0 ohm (c) 100 M ohm	(b) Infinite (d) 10 K ohm.	3.	(a)	What is the difference between "Micron based Design Rule" and "Lambda Based Design Rule"?
	(ii)	For a Standard Cell Layout (a) height is fixed (c) both height and width are fixed	(b) width is fixed (d) none of above.		(b)	What are the differences between Full Custom Design and Standard Cell based Semi Custom Design?
	(iii)	BDD is used in (a) High Level Synthesis	(b) Logic Synthesis		(c)	Draw schematic of CMOS gate which represents function $f = (A + BC + D)$.
	(iv)	(c) Floorplan Minimum Number of Transistors in CMC	•	(((d)	Draw Stick Diagram of the same CMOS circuit. $2 + 2 + 3 + 5 = 12$
		(a) 10 (b) 12	(c) 14 (d) 8.			Group - C
	(v)	LUT belongs to which of the following ty (a) Gate Array (b) CPLD	rpes of Circuits? (c) PLA (d) FPGA.	4.	(a)	Draw Flow Diagram of Physical Layout Automation 3
	(vi)	KL Algorithm is related to (a) Routing (c) Logic Synthesis	(b) Partitioning(d) High Level Synthesis.		(b)	For Channel Routing Problem stated below, draw Horizontal Constraint Graph (HCG) and Vertical Constraint Graph (VCG) Terminal Connection is as follows:
	(vii)	With decrease of V_{dd} , the Delay of an CM (a) increases (c) remains same	OS inverter (b) decreases (d) becomes infinite.			11122563040 Upper Boundary 25055330604 Lower Boundary 0 means no Connection. Assume HV Layer (V = Metal 1, H = Metal 2)
	(viii)	The output of Physical Design is (a) Logical Netlist (c) Layout	(b) Circuit Diagram			(·

VLSI 5102

M.TECH/ECE(VLSI)/1ST SEM/VLSI 5102/2016

(a) 0.7

0.7 Technology Scaling enables Layout area scaling of

2

(c) 0.45

(d) 0.65.

(b) 0.5

M.TECH/ECE(VLSI)/1ST SEM/VLSI 5102/2016

(c) Provide Optimum Channel Routing Solution for above case using Left Edge Algorithm.

2 + 5 + 5 = 12

- 5. (a) Solve Euler Path Algorithm for the function f = C(A + B)'.
 - (b) Draw Stick Diagram accordingly.
 - (c) Describe the difference between Behavioural and Structural Model of VHDL coding using an example.

4 + 4 + 4 = 12

Group - D

- 6. (a) Draw flow diagram of High Level Synthesis.
 - (b) Draw flow diagram of Logic Synthesis.
 - (c) Draw BDD Diagram for function f = abc + ab'c + a'bc' + a'b'c' using Ordering of $a \le b \le c$.
 - (d) Create ROBDD Diagram and corresponding optimized Boolean expression.

3 + 3 + 3 + 3 = 12

- 7. Write short notes on
 - (i) FPGA.
 - (ii) Finite State Machine.
 - (iii) Technology Library Mapping for Logic Synthesis.

4 + 4 + 4 = 12

Group - E

- 8. (a) What are key limitations of pseudo-NMOS logic family?
 - (b) Why CMOS Transmission gate is used instead of NMOS pass transistor logic?
 - (c) Draw Circuit Diagram of a positive edge triggered D-Flip Flop.
 - (d) Draw Circuit Diagram of 16 input OR gate using Domino Circuit.

2 + 2 + 4 + 4 = 12

M.TECH/ECE(VLSI)/1ST SEM/VLSI 5102/2016

- 9. (a) Draw VTC Curve for CMOS Inverter and show various region.
 - (b) Draw Domino Implementation of 3 input NOR gate.
 - (c) Implement f = A.B Boolean logic using Transmission Gate.

3 + 4 + 5 = 12