B.TECH/CHE/5TH SEM/CHEN 3104/2016

NUMERICAL METHODS OF ANALYSIS (CHEN 3104)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The forward elimination step of Gauss Elimination process results in which kind of matrix?
 (a) Lower Triangular
 (b) Upper Triangular
 - (c) Diagonally dominant (d) Identity.
 - (ii) Simpson's 3/8th rule is used in integration when(a) the interval between data is non uniform
 - (b) data is spaced over equal segments
 - (c) a data point is missing
 - (d) none of the above.
 - (iii) The determinant of jacobian at x = 0, y = 0 of the following equations: $x^2 - y + 1 = 0$
 - Sin(x) v = 0

(a) is negative	(b) > 2
(c) is positive	(d) none of the above.

- (iv) Floating point numbers can be represented with the following equation (m: mantissa, b: base of number system used, e: exponent) (a) $e. m^b$ (b) $m. b^e$ (c) $m. e^b$ (d) $e. b^m$
- (v) The truncation error for second order Taylor series approximation of $f(x) = x^2 3x$ is given by (h is difference interval in x)

(a)
$$2h^2$$
 (b) $-2 - h + 2h^2$ (c) $1 - 2h$ (d) $-2 - h$.

B.TECH/CHE/5TH SEM/CHEN 3104/2016

- (vi) The truncation error, ε_t for $f(x) = Sin(\pi/3)$ on the basis of its derivatives at $\pi/4$ with the 1st order Taylor series approximation (a) $1/(12\sqrt{2})$ (b) $13/(12\sqrt{2})$ (c) 1/12 (d) $1/\sqrt{2}$.
- (vii) Heun's Method of ODE integration is similar to
 (a) 2nd order Runge Kutta
 (b) 1st order Runge Kutta
 (c) modified Euler method
 (d) none of above.
- (viii) Which of the following problems is encountered with Newton-Raphson root finding method?(a) It is a linear method and hence less accurate
 - (a) It is a linear method and hence less accura
 - (b) Requires guessing an initial interval(c) May give rise to divergent solution
 - (d) None of the above.
- (ix) The half-bandwidth of a penta-diagonal system is

 (a) 0
 (b) 1
 (c) 2
 (d) none of the above.

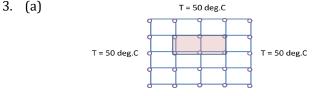
 (x) The minimum value of condition number of a matrix is
- (a) 1 (b) 2 (c) 0 (d) -1.

Group – B

2. (a) A circular rod with an internal heat source S, with non-dimensional temperature at the ends is given by:

$$\frac{dT}{dr} = 0, at r = 0$$
$$T = 1, at r = 1$$

The governing equation for rod temperature is


$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} + S = 0$$

Assume that there are 2 interior points for finite differencing and the initial temperature at these points is zero. Derive the numerical difference equation for the given problem. If r = 0.2 m, $S = 20 \text{K/m}^2$, write out resulting linear system.

(b) Use an iterative method to solve the resulting system.

6 + 6 = 12

B.TECH/CHE/5TH SEM/CHEN 3104/2016

T = 100 deg.C

The figure above shows a slab, the bottom end of which is kept at 100°C and the remaining three sides at 50°C. The slab has a length of 8cm and a breadth of 4cm. The shaded area represents a heat sink, where q = -20 cal/cm²/s. Write out the difference equations for temperature at nodes that are within the heat sink. The thermal diffusivity is given by 0.5 cm²/s.

(b) How would you mathematically express the convergence criterion to obtain converged solutions of T?

10 + 2 = 12

Group – C

4. (a) Given the following set of data

X	1	2	3	5	7	8
f(x)	3	6	19	99	291	444

Calculate f(4) using Newton's interpolating polynomial of order 1 through 4.

- (b) In (a), use lagrange interpolation to calculate f(3.5).
- 6 + 6 = 12
- 5. (a) Use the fourth order RK method to solve over the range 0 to 0.5 using a step size of 0.1.

 $\frac{dy}{dx} = -2y + 4e^{-x}$ $\frac{dz}{dx} = -\frac{yz^2}{3}$ y(0) = 2

$$z(0) = 4$$

(b) Give an example of a system that can generate an initial value ODE.

10 + 2 = 12

Group – D

6. (a) A tank containing liquid at height 7m drains through a pipe which is located at height e = 1m above the bottom of tank. The following differential equation states how the depth of the liquid in tank changes with time.

$$\frac{dh}{dt} = -\frac{\pi d^2}{4A(h)}\sqrt{2g(h+e)}$$

Where A(h) is related to h in the following manner

1		_	-					
	h	7	6	5	4	3	2	1
	A(h)x104 m ²	1.5	1.17	0.97	0.67	0.45	0.32	0.18

Find the time taken for the height of the liquid to drop to the level of the drainage pipe. Time is measured in seconds. Diameter, d of pipe = 0.25m and h(0) = 6m, g = $9.81m/s^2$. Use appropriate integration method.

(b) Fit a lagrange polynomial through the given data of A(h) vs h. How else can you solve the above problem?

6 + (4 + 2) = 12

- 7. (a) Evaluate the following integral using Simpson's 1/3 rule: $\int_{1}^{4} \sqrt{(1+x^3)} dx$
 - (b) Solve the following system of equation using tridiagonal matrix algorithm; $3x_1 - x_2 = 4$ $-x_1 + 3x_2 - x_3 = 10$

$$-2x_2 + 3x_3 = 5$$
6 + 6 = 12

Group – E

8. (a) Use LU decomposition to find the inverse of A matrix in Ax = b given below :

$$4x_1 + x_2 - x_3 = -2$$

$$5x_1 + x_2 + 2x_3 = 4$$

$$6x_1 + x_2 + x_3 = 6$$

4

B.TECH/CHE/5TH SEM/CHEN 3104/2016

(b) Interpolate between *log8 = 0.9030900* and *log12 = 1.0791812* using lagrange interpolation (CC 18.1).

8 + 4 = 12

9. (a) The rate of heat flow by conduction between two points on a cylinder heated at one end is given by

$$\frac{dQ}{dt} = \lambda A \frac{dT}{dx} \text{ and } \frac{dT}{dx} = \frac{100(L-x)(20-t)}{100-xt}$$

where $\lambda = 0.5$ cal cm/s and $A = 12cm^2$

First combine the set of ODE to solve for the heat flow at specified times.

Then calculate the cumulative heat flow, Q from 0 to 20s. Given that at t = 0, Q(0) = 0, L = 20cm and x = 2.5cm. You may use Heun's method of integration.

(b) What is a stiff system? Give an example of a stiff system.

8 + 4 = 12