PROBABILITY AND STATISTICAL METHODS (MTH2102)

Time Allotted : 2½ hrs	Full Marks : 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

Choose the correct alternative for the following

4 and 2 respectively. Then P(X = 1) is equal to

The mean and variance of a random variable \boldsymbol{X} having a binomial distribution are

 $12 \times 1 = 12$

Answer any twelve:

1.

(i)

	(a) $\frac{1}{4}$	(b) $\frac{1}{8}$	(c) $\frac{1}{6}$	(d) $\frac{1}{32}$.
(ii)			4	P(1) = P(2), then $P(0) = P(3)$
	(a) $\frac{1}{e}$	(b) e^2	$(c)\frac{1}{e^2}$	(d) e^0 .
(iii)	For a random var $2) \ge ?$	riable <i>X</i> with mear	n <i>m</i> and variance 2	2, the value of $P(X - m \le$
	(a) 0.9	(b) 0.5	(c) 0.2	(d) 0.3.
(iv)				variable X and Y is given by
	$f(x,y) = \begin{cases} Ce^{-(x+1)} \\ 0 \end{cases}$	$(-y)$, $0 < y < x < \infty$, otherwise (b) 2	, then the value of	C is
	(a) 1	(b) 2	(c) 5	(d) 7
(v)	(a) there is a sing(b) transition pro	le absorbing state babilities do not c le non-absorbing s	hange	process, it is assumed that
(vi)	If $x + 4y + 3 = 0$ expectation of y is		S = 0 be the two	regression lines, then the
	(a) 1	(b) 2	(c) -1	(d) 0.
(vii)		(x, y) and (u, v) are (b) $r_{xy} = -6r_{uv}$		u + 4 and $y = 3v - 6$, then (d) $r_{xy} = 6r_{uv}$.

(viii)	following is left s	ided alternative hy		s, then which one of the (d) H_1 : $\mu = 4$.
(ix)	If $E(T_1) = \theta_1 + \theta_2$		– $ heta_2$ then the unbiase	
(x)	In a test of hypot (a) null hypothes (b) null hypothes (c) null hypothes	hesis Type I error sis is rejected wher sis is rejected wher sis is accepted whe	is committed when it was really false it was really true it was really false in it was really true.	
	F_{i}	ill in the blanks wit	h the correct word	
(xi)	The moment gen $\frac{1}{2}$ is	erating function (I	$M_{ m X}({ m t})$) of Exponentia	l distribution with mean
(xii)	_	if the underlying N	_	a transition probability icible, positive recurrent
(xiii)		v + v = 7 and the coefficient of u and		t of x and y is 0.25, then
(xiv)		has Poisson distribute of m is		r m, then the maximum
(xv)			ndom sample (without i samples (if order is ignoi	replacement) of 2 members red) is
		Grou	o - B	
(a)		own 720 times. U obability of getting	91 to 149 sixes.	uality to obtain a lower
(b)			= -	ϵ random variable X is
(c)	If the chance of distribution to o	being killed by f	[(MTH2102.1) lood during a year ability that out of 30	is $1/3000$, use Poisson 000 persons living in a 000 persons 000 0 persons
(a)	variable with me	an 1200 hours and etermine the prob	d standard deviation and ability that the average	considered as a random 250 hours. Using central age lifetime of 60 bulbs 2.1,MTH2102.2)(Evaluate/HOCQ)]
(b)	The lifetime of a	printer costing 2	00 is exponentially d	listributed with mean 2 buyer if the printer fails

2.

3.

during the first year following its purchase, and a one-half refund if it fails during the second year. If the manufacturer sells 100 printers, how much should it expect to pay in refunds? [(MTH2102.1,MTH2102.2)(Apply/IOCQ)]

6 + 6 = 12

Group - C

- (i) State Chapman-Kolmogorov equation. (a)
 - (ii) If the transition probability matrix of a Markov chain $\{X_n\}$, n=1,2,3...having three states {1,2,3} is $P = \begin{pmatrix} 0.3 & 0.4 & 0.3 \\ 0.6 & 0.2 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{pmatrix}$ and the initial distribution is $\Pi_0 = (0.2, 0.6, 0.2)$. Then find $P(X_2 = 3)$ and $P(X_3 = 2, X_2 = 2, X_3 = 2, X_4 = 3)$ $3, X_1 = 3, X_0 = 2$). [(MTH2102.1,MTH2102.2,MTH2102.3)(Apply/IOCQ)]
 - The two-dimensional random variables *X* and *Y* have a joint probability density (b)

$$f(x,y) = \begin{cases} 8xy, & 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases}$$
(i) Find $P\left(X < \frac{1}{2}, Y < \frac{1}{4}\right)$.

- (ii) Find all the marginal and conditional probability density functions.

[(MTH2102.1,MTH2102.2,MTH2102.3)(Remember/LOCQ)]

$$(2+4)+6=12$$

Following is the joint probability distribution of *X* and *Y*: 5. (a)

Y	1	2	3
X			
0	1	3	1
	10	$\overline{10}$	$\overline{10}$
2	1	1	1
	- 5	10	- 5

- (i) Is it a valid distribution? Give reason.
- (ii) Find the marginal probability mass function of *X* and *Y*.
- (iii) Are X and Y independent? Justify. [(MTH2102.1,MTH2102.2,MTH2102.3)(Remember/LOCQ)]
- For the following transition probability matrix for states {0, 1, 2, 3} (b)

$$\begin{bmatrix} 0 & 0.2 & 0.8 & 0 \\ 0.3 & 0.1 & 0 & 0.6 \\ 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Draw the state transition diagram.
- (ii) Identify the recurrent, transient and absorbing states, and the communicating [(MTH2102.1,MTH2102.2,MTH2102.3)(Remember/LOCQ)] classes.

6 + 6 = 12

Group - D

Calculate the first four central moments and hence find the skewness and kurtosis (a) for the following data:

Marks:	55 - 58	58 - 61	61 - 64	64 - 67	67 - 70
Frequency	12	17	23	18	11

Also comment on the shape of the distribution.

[(MTH2102.3,MTH2102.4,MTH2102.5,MTH2102.6)(Evaluate/HOCQ)]

Out of the two regression lines given by x + 4y + 3 = 0 and 4x + 9y + 5 = 0, which one is the regression line of "y on x"? Justify your answer. Find the mean of x and mean of y. Find the correlation coefficient between x and y. Estimate also the value of x when y = 1.3. [(MTH2102.3, MTH2102.4, MTH2102.5, MTH2102.6) (Analyze/IOCQ)]

6 + 6 = 12

7. (a) Ten students obtained the following marks in Mathematics and Statistics. Calculate the Spearman's Rank Correlation coefficient between the marks of two subjects.

Student (Roll No)	1	2	3	4	5	6	7	8	9	10
Marks in Maths	78	36	98	25	75	82	90	62	65	39
Marks in Physics	84	51	91	60	68	62	86	58	53	47

[(MTH2102.3,MTH2102.4,MTH2102.5,MTH2102.6)(Evaluate/HOCQ)]

(b) Find the median and mode for the following frequency distribution:

<u> </u>						0 1				
Class Intervals:	0 - 4	5 – 9	10 – 14	15 – 19	20 - 24	25 – 29	30 - 34	35 – 39	40 - 44	45 – 49
Frequency:	0	2	11	26	17	3	6	8	2	1

[(MTH2102.3,MTH2102.4,MTH2102.5,MTH2102.6)(Apply/IOCQ)]

6 + 6 = 12

Group - E

- 8. (a) A machine produces a component of a product with a standard deviation of 1.6 cm in length. A random sample of 64 components was selected from the output and this sample has a mean length of 90 cm. The customer will reject the part if it is either less than 88 cm or more than 92 cm. Does the 95% confidence interval for the true mean length of all the components produced ensure acceptance by the customer? [(MTH2102.4,MTH2102.5,MTH2102.6)(Analyze/IOCQ)]
 - (b) (i) If T is an unbiased estimator of the population parameter θ , then prove that \sqrt{T} is biased estimator of $\sqrt{\theta}$.
 - (ii) Define consistent estimator.

[(MTH2102.4,MTH2102.5,MTH2102.6)(Remember/LOCQ)]

6 + 6 = 12

- 9. (a) A sample of size n=100 is drawn from a population having standard deviation $\sigma=5.1$. Given that the sample mean is $\overline{x}=21.6$. Find 95% confidence interval for the population mean μ . It is given that the area under the standard normal curve between z=0 and z=1.96 is 0.475. [(MTH2102.4,MTH2102.5,MTH2102.6)(Apply/IOCQ)]
 - (b) In order to test whether a coin is perfect, the coin is tossed 5 times. The null hypothesis of perfectness is rejected if more than 4 heads are obtained. What is the probability of Type I error? Find the probability of Type II error when the corresponding probability of head is 0.2. [(MTH2102.4,MTH2102.5,MTH2102.6)(Analyze/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33	47.92	18.75