MATHEMATICS - I (MTH1101)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

1.

andida	tes are required	d to give answ	er in their	own words as far as practicable.
		Gr	oup – A	
Answ	er any twelve:			12 × 1 = 12
	Choo	ose the correct al	lternative fo	or the following
(i)	If $\lambda_1 = 2$, $\lambda_2 = 4$ then the value of (a) -1			genvalues of a 3×3 square matrix A , (d) 1.
(ii)	If A is an orth (a) symmetric (c) orthogonal		nen A^{-1} is	(b) skew symmetric(d) idempotent.
(iii)	The series $1 - \frac{1}{2}$ (a) conditionally (c) oscillatory			(b) divergent(d) absolutely convergent.
(iv)	A vector normal (a) $2\hat{\imath} - 3\hat{\jmath} - \hat{k}$ (c) $-2\hat{\imath} + 3\hat{\jmath} - \hat{k}$	_	-	= 0 is (b) $2\hat{i} + 3\hat{j} - \hat{k}$ (d) $2\hat{i} + 3\hat{j} + \hat{k}$.
(v)	The value of the z) $\hat{j} + (4x - y + 4x - y)$	_		$\cot \vec{f} = (x + 2y + az)\hat{i} + (2x - 3y - 4z)\hat{j} +$
(vi)	If the differentiate value of <i>A</i> is (a) <i>x</i>	al equation $(y + (b))$	$\left(\frac{1}{x} + \frac{1}{x^2 y}\right) dx$ $\left(c\right) \frac{1}{xy}$	$x + \left(x - \frac{1}{y} + \frac{A}{xy^2}\right) dy$ is exact then the (d) $\frac{1}{y}$.
(vii)	The order and o	legree of the diff	ferential eq (c) 4,3	quation $\left\{1 + \left(\frac{dy}{dx}\right)^4\right\}^{\frac{1}{3}} = \frac{d^2y}{dx^2}$ are (d) 4, 2.

The general solution of the differential equation (y + x)dx + x dy = 0 is (viii)

(a)
$$x^2 - y^2 = c$$

(b)
$$x^2 - xy = c$$

$$(c) x^2 + 2xy = c$$

(d)
$$x^2 - 2xy = c$$

where *c* is an arbitrary constant.

The changed order of the integral $\int_0^a \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} dx \ dy$ is (ix)

(a)
$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} dy \, dx$$

(c) $\int_0^a \int_0^{-\sqrt{2ax-x^2}} dy \, dx$

(b)
$$\int_0^a \int_0^{\sqrt{2ax-x^2}} dy \ dx$$

(c)
$$\int_0^a \int_0^{-\sqrt{2ax-x^2}} dy \ dx$$

(b)
$$\int_0^a \int_0^{\sqrt{2ax-x^2}} dy \, dx$$

(d) $\int_0^{2a} \int_0^{-\sqrt{2ax-x^2}} dy \, dx$

If x = u + v and y = uv, then $\frac{\partial(x,y)}{\partial(u,v)}$ is (x)

(b)
$$u - v$$

(c)
$$u + v$$

(d)
$$\frac{u}{v}$$
.

Fill in the blanks with the correct word

If λ is an eigenvalue of a non-singular matrix A, then $\frac{1}{\lambda}$ is an eigenvalue of (xi)

The rank of the matrix $A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$ is _____. (xii)

If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then $div \vec{r}$ is equal to _____. (xiii)

The value of the line integral $\int_{\mathcal{C}} (dx - x dy)$ is where \mathcal{C} is the line joining (0,1) to (xiv)

Integrating factor of $\frac{dx}{dy} + \frac{x}{y \log y} = \frac{2}{y}$ is _____. (xv)

Group - B

Reduce the following matrix $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$ to a row reduced echelon form and (a) 2. hence find its rank. [(MTH1101.1, MTH1101.2) (Understand /LOCQ)]

State Cayley-Hamilton theorem and verify the theorem for the matrix

 $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 1 \end{bmatrix}.$

(b)

[(MTH1101.1, MTH1101.2 (Apply /IOCQ)]

6 + 6 = 12

If $\lambda \neq -14$, then show that the system of equations 3. (a)

$$5x + 2y - z = 1$$

$$2x + 3y + 4z = 7$$

$$4x - 5y + \lambda z = \lambda - 5$$
 has a unique solution $(0, 1, 1)$.

[(MTH1101.1, MTH1101.2)(Understand /LOCQ)]

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 2 & 7 \\ 4 & 0 & 3 \end{bmatrix}$. (b) 6 + 6 = 12

Group - C

If $r = |\vec{r}|$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, rove that 4. (a) (i) $\overrightarrow{\nabla} \left(\frac{1}{r}\right) = -\frac{\overrightarrow{r}}{r^3}$ and (ii) $\overrightarrow{\nabla} (r^n) = n r^{n-2} \overrightarrow{r}$.

[(MTH1101.3, MTH1101.4)(Understand/LOCQ)]

- Discuss the convergence of the series (b) $1 + \frac{(1!)^2}{2!}x + \frac{(2!)^2}{4!}x^2 + \frac{(3!)^2}{6!}x^3 + \dots \infty, x > 0. \quad [(MTH1101.3, MTH1101.4)(Analyse/IOCQ)]$ 6 + 6 = 12
- Show that $\left\{\frac{3n+1}{n+2}\right\}$, $n \in \mathbb{N}$ is a bounded sequence. 5. (a)

[(MTH1101.3, MTH1101.4) (Remember/LOCQ)]

Examine the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n^4+1}-\sqrt{n^4-1})$. [(MTH1101.3, MTH1101.4) (Analyse/IOCQ)] (b)

function $\varphi(x,y,z)$ is such that $\vec{\nabla}\varphi = 2xyz^3\hat{\imath} + x^2z^3\hat{\jmath} + 3x^2yz^2\hat{k}$. If (c) $\varphi(1, -2, 2) = 4$, find $\varphi(x, y, z)$. [(MTH1101.3, MTH1101.4)(Evaluate/HOCQ)] 2 + 4 + 6 = 12

Group - D

- Find the singular and general solutions for the equation $y = px + p^2$ where $p \equiv$ 6. (a) [(MTH1101.5)(Evaluate/HOCQ)]
 - Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x \log x$. (b) 6 + 6 = 12
- Check whether the following equation is exact or not and then solve it. 7. (a) $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$ [(MTH1101.5)(Understand/LOCQ)]
 - Solve the following Cauchy-Euler equation $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 4y = x \sin(\log x)$. (b) 6 + 6 = 12

Group - E

- Change the order of the integration and hence evaluate $\int_0^1 \int_{e^x}^e \frac{dx \, dy}{y^2 \log y}$. [(MTH1101.6)(Analyse/IOCQ)] 8. (a)
 - Applying Euler's theorem on homogeneous function, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$ (b) $\frac{1}{2}$ tan u, where

$$u=\sin^{-1}\frac{x+y}{\sqrt{x}+\sqrt{y}}$$
. Hence show that $x^2\frac{\partial^2 u}{\partial x^2}+2xy\frac{\partial^2 u}{\partial x\partial y}+y^2\frac{\partial^2 u}{\partial y^2}=-\frac{\sin u\cos 2u}{4\cos^3 u}$. [(MTH1101.6)(Remember/LOCQ)] $\mathbf{5}+\mathbf{7}=\mathbf{12}$

9. (a) Evaluate by Green's theorem $\int_{\Gamma} \{(2xy - x^2)dx + (x + y^2)dy\}$ where Γ is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$.

[(MTH1101.6) (Evaluate/HOCQ)]

(b) If
$$u = u\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

[(MTH1101.6) (Understand/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	46.87	34.38	18.75