BASIC ELECTRONICS ENGINEERING

(ECEN 1001)

Time Allotted : 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternative for the following: 1.

 $[10 \times 1 = 10]$

Relation between α and β of BJT is i)

a)
$$\alpha = \frac{(\beta+1)}{\beta}$$
 b) $\beta = \frac{\alpha}{(1-\alpha)}$ c) $\beta = \frac{\alpha}{(1+\alpha)}$ d) $\alpha = \frac{\beta}{1-\beta}$

The built-in-potential of a silicon diode is about ii)

- a) 2.4V
- b) 3V
- c) 3.1V
- d) 0.7V

iii) The maximum efficiency of a half-wave rectifier is

- a) 40.6%
- b) 56.6%
- c) 81.2%
- d) 50%

iv) On increasing temperature the Fermi level moves

- a) in n-type semiconductor towards the centre of the band gap
- b) in p-type semiconductor towards the centre of the band gap
- c) in both n and p type semiconductor towards the centre of the band gap
- d) for n-type semiconductor towards conduction band and for p-type semiconductor towards valence band

v)	The leakage current across a p-n junction is due to			
	a) minority carriers		b) majority carriers	
	c) junction capacitance		d) none of these	
vi) In a transistor, signal is transferred from a resistance to resistance circuit				resistance to
	a) high, low	b) low, high	c) high, high	d) low, low
vii)	Operating point represents			
	a) values of V_{CE} and I_{C} when ac signal is applied			
	b) values of I_B and V_{BE}			
	c) the magnitude of the external signal			
	d) values of V_{CE} and I_{C} before the application of ac signal			
viii)	An inverting op-amp has R_1 = $1K\Omega$ and R_f = $100K\Omega;$ the input impedance is			
	a) 1KΩ	b) 100KΩ	c) 101KΩ	d) infinite
ix)	In an oscillator			
	a) negative feedback is used b) positive feedback is used			
	c) ac input signal is applied d) amplification occurs			
x)	The effective channel length of a MOSFET in saturation, decreases with increase in			
	a) gate voltage b) drain voltage c) source voltage d) body voltage			
		GF	ROUP - B	
2 a) For an unbia	sed p-n junctio	n, sketch the v	ariation of the space

ECEN 1001 2

function of distance across the junction.

charge, electric field, electrostatic potential and electron energy as a

- b) 'Zener breakdown voltage has a negative temperature co-efficient whereas avalanche break-down voltage has a positive temperature co-efficient'. Explain
- c) "The dynamic resistance of an ideal Zener diode is zero but the dc resistance is not so". Explain the reason.
- d) A silicon diode has a reverse saturation current of 0.1nA at room temperature. Find its current when it is biased in the forward direction by 0.55V.

4+2+3+3=12

- 3 a) Giving relevant defining equations, explain the phenomenon of drift and diffusion associated with carrier movement in semiconductors.
 - b) State mass-action law. Explain its meaning.
 - c) Calculate the thermal-equilibrium electron and hole concentrations in a germanium sample for a given doping density. Consider a germanium sample at T = 300K in which $N_d = 5 \times 10^{-13} \text{ cm}^{-3}$ and $N_a = 0$. Assume that $n_i = 2.4 \times 10^{13} \text{ cm}^{-3}$.

5+3+4=12

GROUP - C

- 4 a) Name the three possible transistor connections. Explain the operation of transistor as an amplifier.
 - b) Define β . Show that $\beta = \frac{\alpha}{(1-\alpha)}$.
 - c) A transistor has $I_B = 105 \mu A$ and $I_c = 2.05 mA$. Find the following:
 - i) β of transistor ii) α of transistor iii) emitter current I_E .

(1+4)+(1+3)+3=12

- 5 a) What do you mean by the quiescent point of a transistor amplifier?
 - b) What is load line of a BJT? Explain its significance.

ECEN 1001 3

c) A CE mode amplifier is biased by a potential divider circuit. Here R1 = $60k\Omega$; R2 = $10k\Omega$, β =60. Find the value of the stability factor when R_E= $1k\Omega$ and $3k\Omega$.

2+4+6=12

GROUP - D

- 6 a) When is channel of a JFET said to be pinched off? Define the pinch-off voltage. Give the relationship between the pinch-off voltage, the saturation voltage and the gate source voltage. What is pinch-off current?
 - b) BJT is characterized by current gain but FET is characterized by trans-conductance gain-- Explain.

(2+2+3+1)+4=12

- 7 a) Why is the field-effect transistor called a unipolar transistor? Draw schematically the structure of an n-channel MOSFET and explain the terms source, drain, gate and substrate. What is the significance of the terms field-effect?
 - b) What is the major physical difference between an enhancementtype and a depletion-type MOSFET?
 - c) Draw the typical volt-ampere drain characteristics curve of a pchannel enhancement mode MOSFET?

(1+4+2)+3+2=12

ECEN 1001 4

GROUP - E

- 8. a) Explain with the help of a block diagram the working principle of a feedback amplifier. Find out an expression for the voltage gain with feedback.
 - b) Write down the condition of oscillation.
 - c) A feedback amplifier is designed with closed loop gain of 100. The maximum allowable variation in closed loop gain is 1% where as that in open-loop gain is 10%. Determine the open loop voltage gain and the feedback factor for the amplifier.

(3+2)+3+4=12

- 9 a) Define the following parameters in respect of OP AMP:
 - i) CMRR
- ii) Slew Rate
- iii) Offset voltage
- b) In an OP AMP, when the voltage applied to the inverting input terminal is $v_1 = 50\mu V$ and that applied to the inverting input terminal is $v_2 = -50\mu V$, what is the output voltage, if the voltage gain for the difference signal is A_d? If the Common Mode Rejection Ratio is 1000, calculate the percentage difference of the output voltage obtained with $v_1 = 500\mu V$ and $v_2 = 400\mu V$.

(2+2+2)+(4+2)=12

ECEN 1001 5