M.TECH/AEIE/1ST SEM/AEIE 5101/2016

- (v) What has been considered as the industry standard of linear ICs?
 (a) 555 timer
 (b) 741 op amp
 (c) LM 340
 (d) LM 317.
- (vi) What is the typical input bias current of a 741 operational amplifier?
 (a) 70 nA
 (b) 80 nA
 (c) 90 nA
 (d) 100 nA.
- (vii) What is the most common method used for the growth of single crystals for IC fabrication?
 - (a) Epitaxial growth(b) Czochralsky pulling technique(c) Film deposition(d) Photolithography.
- (viii) In the figure below, assuming that the resistance R is very large, what is the best approximation for V_{out} ?

- (ix) Basic building block in digital circuit is/are
 (a) NAND
 (b) NOR
 (c) AND
 (d) both (a) and (b).
- (x) The MOSFET below

is labeled with the different types of silicon. The device is best described as (a) an NFET in an N-well (b) an NFET in a P-well

(a) an NFET in an N-well(b) an NFET in a P-wel(c) a PFET in an N-well(d) a PFET in a P-well.

Group – B

- 2. (a) Briefly describe the steps associated in IC processing, fabrication and packaging.
 - (b) Write short note on MOS based active resistor circuit.

8 + 4 = 12

M.TECH/AEIE/1ST SEM/AEIE 5101/2016

- 3. (a) Derive an expression for propagation delay in a CMOS inverte capacitor load. Comment on the relation between propagation and capacitance of the load.
 - (b) For a 0.25 μ m process characterized by V_{DD}=2.5V, V_{tn}= V_{tp} = k'_n =3.5 k'_p =115 μ A/V², find t_{PLH}, t_{PHL}and t_P for an inverter (W/L)_n=1.5, (W/L)_p=3 and C=10fF.

6+

Group – C

- 4. (a) Derive the expression of dominant pole frequency (f_p) , unity bandwidth (f_t) and slew rate (SR) of 741 op-amp. How are related to each other?
 - (b) What is the use of 741 op-amp output short circuit prot circuit?

(6+2)+4

- 5. (a) Perform small signal analysis on a MOS cascode amplifier w the load circuit and derive an expression for voltage gain and c resistance.
 - (b) It is required to connect a transducer having an open-circuit v of 1V and source resistance of $1M\Omega$ to a load of $1k\Omega$ resistance the load voltage if the connection is done (i) directly and (ii) th a unity gain voltage follower.

6+6

Group – D

- 6. (a) Briefly explain the operation of charge-redistribution Anal Digital Converter.
 - (b) Consider a 5-bit charge redistribution A/D converter with V_{REF} What is the full scale voltage of this converter?

10 + 2

- 7. (a) Obtain the expressions for common mode gain and CMRR 1 active loaded MOS differential pair.
 - (b) An active loadedMOS differential amplifier has the following specific $(W/L)_n=100$, $(W/L)_p=200$, $\mu_n C_{ox}=2\mu_p C_{ox}=0.2mA/V^2$, $V_{An}=|V_{Ap}|$ $I_0=0.8mA$, $R_{ss}=25K\Omega$. Calculate G_{m} , R_{o} , A_d , $|A_{cm}|$, and CMRR.

7+5

AEIE 5101

3

Group – E

8. (a) Briefly explain the CMOS realization of AOI gate and explain with truth table.

(b) Implement $F = AB + \overline{AB}$ using the AOI logic gate.

8 + 4 = 12

9. (a) Perform small signal analysis on the given NMOS amplifier circuit, shown in the following figure. Find an expression for output impedance and voltage gain.

(b) Compare a bipolar current mirror with MOS mirror. What is bias compensation in a bipolar mirror and how does it improve current transfer ratio.

4 + 8 = 12

M.TECH/AEIE/1ST SEM/AEIE 5101/2016

MICRO ELECTRONIC DEVICES AND CIRCUITS (AEIE 5101)

Time Allotted : 3 hrs

Full Marks :

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group

Candidates are required to give answer in their own words as far a practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 × 1 :

- (i) The threshold voltage of an n-channel MOSFET can be increase
 (a) increasing the channel dopant concentration
 (b) reducing the channel dopant concentration
 (c) reducing gate oxide thickness
 (d) reducing the channel length.
- (ii) In a CMOS inverter the upper MOSFET is

 (a) active load
 (b) passive load
 (c) complementary load
 (d) none of the above
- (iii) The extremely high input impedance of a MOSFET is primarily due
 (a) absence of its channel
 (b) negative gate-source voltage
 - (c) depletion of current carriers
 - (d) extremely small leakage current of its gate capacitor.

 $\begin{array}{c}
R_1 \\
V_n \\
R_2 \\
V_o \\
V_{out} \\
\hline
V_{out} \\$

If $R_1 = 10 \text{ k}\Omega$, and $R_2 = 30 \text{ k}\Omega$, the input impedance of the circuit (a) $10\text{k}\Omega$ (b) $40\text{k}\Omega$ (c) infinity (d) none of the above

AEIE 5101

1