M.TECH/ECE(VLSI)/2ND SEM /VLSI 5231/2016

	(vi)	In case of underlap DG MOSFETs, the (a) increases (b (c) doubles (d	GIDL current) decreases) is unchanged.				
	(vii)	The extremely high input impedance of a MOSFET is primarily due to the (a) absence of its channel (b) negative gate-source voltage (c) depletion of current carriers (d) extremely small leakage current of its gate capacitor					
	(viii)	 The main factor which makes a MOSFET likely to breakdown during the normal handling (a) very low gate capacitance (b) high leakage current (c) high input resistance (d) both (a) and (c) 					
	(ix)	Lateral channel engineering or HALO (a) reduction of DIBL effect (c) increased RSCE	O implant causes (b) lowering of Vth roll off (d) all of the above				
	(x)	Graphene is a band gap ser (a)zero (b) wide	niconductor. (c) low	(d) infinite.			
Group – B							
2.	(a)	How a step potential profile can be created along the channel of the MOSFET using work function engineering?					
	(b)	Explain the effect of higher work function gate material near the drain side of the device.					
	(c)	Explain how the use of dual material gate can control the on current and DIBL of the conventional DG MOSFET?					
			2	k + 3 + 5 = 12			
3.	(a)	How substrate doping influences SCE	?				
	(b)	Draw the cross-sectional diagram of a planar DG-MOSFET and explain how it is better compared to an FD-SOI device.					
	(c)	Why undoped substrate is chosen for	• scaled double-gate 2	9 MOSFET? 2 + 5 + 5 = 12			

M.TECH/ECE(VLSI)/2ND SEM /VLSI 5231/2016

Group – C

- Explain gate tunneling currents. Why does gate tunnelling occur in a 4. (a) device?
 - Explain how gate tunnelling current can be overcome by the use of (b) high k dielectric material?
 - What are the limitations of using high k dielectric material? (c)

5 + 5 + 2 = 12

- 5. (a) Explain the problem associated with polysilicon gate and metal gate.
 - What do you mean by polysilicon depletion effect? (b)
 - What do you mean by surface scattering? (c)
 - Write a short note on PD-SOI and FD-SOI MOS structure? (d) 3 + 2 + 3 + 4 = 12

Group – D

- 6. (a) Discuss corner effects in Triple Gate FinFETs. How can they be taken care of in these structures?
 - What is device width quantization problem in FinFETs? (b)
 - Write a short note on volume inversion in DG MOSFETs. (c)

4 + 4 + 4 = 12

- What is process variability in CMOS technology? Why is its study 7. (a) important?
 - Explain how the High-K dielectric morphology introduces significant (b) process variability.

6 + 6 = 12

Group – E

- (a) What is modulation doping? What are its benefits? 8.
 - (b) Explain how modulation doping is used in MODFETs.

(2+2) + 8 = 12

M.TECH/ECE(VLSI)/2ND SEM /VLSI 5231/2016

- 9. (a) Discuss in brief, some of the interesting properties of Graphene that make it a subject of consideration for novel devices.
 - (b) Write a short note on graphene nanoribbons.

6 + 6 = 12

M.TECH/ECE(VLSI)/2ND SEM /VLSI 5231/2016 2016

ADVANCED MICRO & NANO DEVICES (VLSI 5231)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	$10 \times 1 = 10$			
	(i)	The expression (a) BJT	on [I _D =k(V _{gs} -V _{th}) ²] c (b) E-MOSFET	an be used only f (c) D-MOSFET	or ſ (d) JFET
	(ii)	In compariso body effect is (a) high	on to conventional ; (b) low	bulk MOSFETs, (c) absent	in SOI devices the (d) same
	(iii)	 (iii) The transit time of the current carriers through the ch decides it'scharacteristics (a) source (b) drain (c) GATE (d) source a 		he channel of a JFET n rce and drain	
	(iv)	 An E-MOSFET that operates at the cutoff or in the ohmic region is an example of (a) Current source (b) An active load (c) A passive load (d) A switching device 			

1

- (v) 2DEG results in high mobility because
 - (a) there is negligible impurity scattering
 - (b) there is no scattering
 - (c) electrons are in a quantum well

(d) none of these.