M.TECH/ECE/2ND SEM/ECEN 5201/2024

ADVANCED DIGITAL COMMUNICATION TECHNIQUES (ECEN 5201)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Co

1.

andi	idates are required to give	ve answer in their ow	n words as far as practicable.
		Group – A	
An	swer any twelve:		12 × 1 = 12
	Choose the	correct alternative for th	e following
(i)	Maximum quantization (a) ±S/2 (b) ±	n error in binary PCM is :S (c) ±2S	(d) S^2; where S= Step size
(ii)		rerage no. of bits/symbo (b)	ol) L _{min} / L _{avg} L _{max} / L
(iii		individual shift register	e, maximum number of memory r is (d) 5
(iv	(a) to overcome quant(b) in PCM transmitter(c) to protect small sig	ization noise in PCM s, to allow amplitude lin nals in PCM from quanti to overcome impulse no	zation distortion
(v)	Thermally generated a below (a) Binomial (c) Laplacian	(b) 1	ter follows one distribution given Poisson's Gaussian.
(vi	In eye pattern, as eye c(a) Timing jitter increa(c) Timing jitter increa	ises (b)	ISI decreases ISI increases.
(vi	i) In QPSK modulation, the (a) Frequency only (c) Amplitude and frequency	(b) A	Amplitude only Amplitude and phase.

(viii)	MIMO stands for (a) Multiple Input Minimum Output (c) Multiple Input Multiple Output	
(ix)	Number of elements in GF (2 ⁵) field is (a) 5 (b) 16 (c) 3	1 (d) 32
(x)	Piconet in Bluetooth networks can consist (a) 6 slaves and two masters (c) 1 master and 7 slaves	
	Fill in the blanks with the	correct word
(xi)	In a GSM system the uplink frequency is be	935 MHz. The downlink frequency will
(xii)	The number of distinct symbols present	in 8-PSK system
(xiii)	For a block code with $d_{min} = 5$, the error of	correction capability is
(xiv)	In QPSK, a symbol is represented by a	
(xv)	Quantization error can be decreased if the	e sampling clock is made
	Group - B	
(a)	Draw the block diagram for a basic digital	
(b)	Explain the functions of 'Source Encoding	
(c)	Show the schematic diagram for Linear Expression for the output, Y(t).	Gaussian Channel model and write the [(CO1)(Remember/IOCQ)] $4 + 3 + 5 = 12$
(a)	What is ISI in digital communication	
(b)	visualize the effect of ISI in the received of Explain the ISI phenomenon using the ba	seband equivalent channel model.
(c)	What is the function of the equalizer?Dr model with the equalizer.	raw the equivalent transmission system $[(CO4)(Analyse/IOCQ)]$ $(2+2+1)+3+(1+3)=12$
	Group - C	
(a)	For a bit sequence of 100011 draw the FSK (iii) PSK modulation scheme.	resulting waveform for (i) B-ASK (ii) B- [(CO2)(Apply/IOCQ)]
(b)	To transmit a bit sequence of 110011 following line code format (i) Polar-F Coding.	0, draw the resulting waveform using

2.

3.

4.

(c)

[(CO2)(Understand/LOCQ)]3 + 3 + (4 + 2) = 12

[(CO2)(Apply/IOCQ)]

and draw its signal space diagram.

With suitable diagrams, explain the working principle of the QPSK transmitter

- 5. (a) How does multi-carrier CDMA system work? [(CO3)(Understand/IOCQ)]
 - (b) Explain the working principle of OFDM transmitter and OFDM receiver with the help of a block diagram. [(CO3)(Remember/LOCQ)]
 - (c) Discuss the advantages of OFDM over FDM.

[(CO3)(Analyse/IOCQ)]

4 + 5 + 3 = 12

Group - D

- 6. (a) Derive the equation for system bandwidth as a function of channel capacity and SNR. [(CO4)(Analyse/IOCQ)]
 - (b) Show with diagram how DS-SS is generated. Create a spread spectrum signal using Barker sequence. Use any data sequence signal as input. [(CO4)(Create/HOCQ)]

4 + 8 = 12

- 7. (a) Discuss the working principle of slotted ALOHA. [(CO1)(Remember/LOCQ)]
 - (b) Explain how RAKE receivers help quality reception in CDMA systems. Explain the operation of a RAKE receiver with the help of a block diagram.

[(CO3)(Analyse/IOCQ)]

4 + (4 + 4) = 12

Group - E

- 8. (a) Why in data communication, addition and subtraction (involving 1 and 1) results are same? Explain clearly. [(CO5)(Analyse/IOCQ)]
 - (b) A discrete memory less source has 5 messages S_1,S_2,S_3,S_4,S_5 with probability matrix $\{0.3,0.29,0.16,0.15,0.1\}$. Construct the Huffman Code and calculate the code efficiency. [(CO5)(Analyse/HOCQ)]

4 + 8 = 12

9. (a) Parity check matrix of a linear block code is

$$H = \begin{bmatrix} 1110100 \\ 0111010 \\ 1101001 \end{bmatrix}$$

- (i) Determine the generator matrix.
- (ii) Write down the parity bit generating equations.
- (iii) Assuming that a vector [1010101] is received, find the correct data.

[(CO5)(Apply/IOCQ)]

(b) Explain with the help of the coding gain curve, how a minimum values of (E_b/N_0) is important. [(CO6)(Analyse/HOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	19.79	57.29	22.92

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Learn about the transmission techniques, synchronization in digital communication.
- 2. Know about the modulation schemes, OFDM etc.
- 3. Acquire knowledge about the CDMA in details
- 4. Have clear idea about estimation and detection schemes. They will be able to design reliable channel codings.
- 5. Understand the differences between coding schemes.
- 6. Analyse the digital communication quality.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.