M.TECH/BT/2ND SEM/BIOT 5202/2024

ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT AND SCALE UP (BIOT 5202)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any4 (four)</u> from Group B to E, taking <u>one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

1.

	Symbols are of u	ISUAL SIGNIFICANCE
	Grou	ıp – A
Answ	er any twelve:	12 × 1 = 12
	Choose the correct alte	rnative for the following
(i)	Which of the following equation with fluid flow problems? (a) Newton's third law (c) Continuity equation	must be perfunctorily satisfied while dealing (b) Law of conservation of momentum (d) Newton's second law.
(ii)	Balanced growth occurs in (a) Lag phase (c) Stationary phase	(b) Log phase(d) Death phase.
(iii)	If the reaction rate doubles as the factor of two, what is the order of (a) First order (c) Pseudo first order	concentration of the reactant A increases by a the reaction with respect to A? (b) Zero order (d) None of these.
(iv)	Immobilized cell reactors for whaving / being (a) higher cell concentration (b) more stable prevents washout (c) higher dilution rate before the (d) all of the above.	
(v)		odies are described by the kinetics of the type (b) non-growth associated (d) combination of (a) and (b).
(vi)	Airlift fermenter is used for the property (a) Alcohol (c) Enzyme	roduction of (b) Penicillin G (d) Antibody.

(vii)	Cell suspension is a non-Newtonian fluid (a) Bingham plastic (c) Dialant	of the type (b) Pseudo plastic (d) None of the above.				
(viii)	The criterion for the selection of animal c (a) low share rate (c) combination of (a) and (b)					
(ix)	The best method to control bioreactor sy (a) PI control system (c) PID control system					
(x)	The concentration of A in a first order rea (a) linearly with time (c) logarithmically with time					
	Fill in the blanks with the o	correct word				
(xi)	xi) At steady state in a continuous reactor dilution rate is					
(xii)	(xii) For nth. order reaction if $n < 1$ The reaction will complete in time.					
(xiii)	For nth. order reaction if n > 1 The reaction will complete in time.					
(xiv)	Monod model behaves as a reaction of order for small substrate concentration.					
(xv)	nth order rate equation is not valid for n	=				
	Group – B					
I. As II. As III. As D=0.8	ate the productivity (i.e. DP) of a chemostal sume Monod kinetics apply sume LuedekingPiret equation for product sume steady state $\mu_{max}, \mu_{max}=1.0h^{-1}, K_s=10mg/L, \alpha=0.4mg h^{-1}mg P/gX.$	t formation applies				

3. The following date were obtained in a chemostat for the growth of *E. aerogenes* on a glycerol limited growth medium.

D, h-1, Dilution rate	0.05	0.1	0.2	0.4	0.6	0.7	8.0	0.84
S, mg/ml, glycerol concentration	0.012	0.028	0.05	0.1	0.15	0.176	8.0	9.00
X, mg/ml, cell concentration	3.2	3.7	4	4.4	4.75	4.9	4.5	0.5

 $S_0 = 10 \text{mg/ml}$

2.

For this system estimate the values of K_s , μ_m , $Y^M{}_{x/s}$, maintenance coefficient (m_s). [(CO1)(Calculate/HOCQ)]

Group - C

- 4. (a) Find the conversion after 70 minutes in a batch reactor for $A \rightarrow R$, $-R = 3 C_A^{0.5}$ (mol) / (liter. hr.), $C_{A0} = 1$ mol/lit. [(CO4)(Apply/IOCQ)]
 - (b) Derive 2^{nd} order rate equation and show the result graphically in terms of C_A and X_A . [(CO4)(Apply/IOCQ)]

6 + (3 + 3) = 12

- 5. (a) Liquid A decomposes by second-order kinetics, and in a batch reactor 50% of A is converted in a 5-minutes run. How much longer would it take to reach 75% Conversion? [(CO3)(Analyse/IOCQ)]
 - (b) After 8 minutes in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/lit.}$) is 80 % converted, after 18 minutes, conversion is 90 %. Find a rate equation to represent this reaction. [(CO4)(Remember/IOCQ)]

6 + 6 = 12

Group - D

- 6. (a) Explain different techniques for immobilization. [(CO4)(Apply/LOCQ)]
 - (b) Discuss the merits and demerits of immobilization both for cells and enzyme.

[(CO4)(Calculate/LOCQ)]

4 + (4 + 4) = 12

7. (a) Discuss the application and advantages of hollow fibre reactor.

[(CO5)(Remember/LOCQ)]

(b) Explain the special considerations for animal cell culture bioreactors.

[(CO5)(Remember/LOCQ)]

6 + 6 = 12

Group - E

- 8. (a) What do you understand by the term bioprocess? Why oxygen transfer is so important in aerobic fermentation? [(CO5)(Evaluate/LOCQ)]
 - (b) How do you control dissolved oxygen (DO) and pH in a CSTR?

[(CO6)(Evaluate/LOCQ)]

(2+4)+6=12

- 9. (a) Explain the basic operating principles of pH meter. [(CO6)(Understand/LOCQ)]
 - (b) How do you control the temperature and R P M in a bioreactor?

[(CO6)(Understand/LOCQ)]

6 + (3 + 3) = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	50	37.5	12.5

Course Outcome (CO):

After completing this course, students should be able to:

- 1. Develop basic concept of reaction engineering including microbial growth kinetics.
- 2. Determine mass transfer coefficient.
- 3. Cultivate knowledge about different reactor operations and scale up and scale down.
- 4. Interpret batch reactor data with reference to basic reactor design for a single reaction in an ideal reactor.
- 5. Develop understanding about different advanced bioreactors.
- 6. Be familiar with the bioreactor instrumentation for monitoring and control of bioprocesses.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.