M.TECH/BT/2ND SEM/BIOT 5204/2015 2015

Advances in Bioreactor Design, Development & Scale up (BIOT 5204)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10×1=10

(i) The kinetics of microbial growth in a batch culture system is represented by

- (a) Henry's equation
- (b) Michaelis-Menten equation
- (c) Arrhenius equation (d) Monod equation.

(ii) Without cell recycle D_{max} is always

(a) Greater than μ_{max}	(b) Equal to μ_{max}
(c) Less than μ_{max}	(d) Independent of μ_{max} .

(iii) The relation between power number (P) and Reynolds number (Re) is:

(a) P α Re	(b) P α (1/Re)	
(c) P α Re ²	(d) P α √Re.	

(iv) In Leudeking-Piret model for β = 0, the product is

(a) Growth associated

- ciated (b) Non-growth associated (ch associated (ch associated) (ch associated)
- (c) Mixed growth associated

(v) In K_L a calculation, 'a' is

- (a) area per unit volume
- (c) volume

(b) area(d) volume per unit area.

- (vi) Non-ideal reactor are characterized by
 - (a) Dispersion number(b) Peclet number(c) Reynolds number(d) Damkohlar number.
- (vii) Maximum surface area can be obtained in(a) Hollow fibre reactor(b) Packed Bed reactor
 - (c) CSTR (d) Airlift reactor.

(viii) Monod model is mathematically represented by an equation of the type:

- (a) Linear (b) Hyperbolic
- (c) Parabolic (d) Elliptical.

M.TECH/BT/2ND SEM/BIOT 5204/2015

(ix) l	Jnit of first orde	er rate constant (K) is	
	(a) Time	(b) Time ⁻¹	(c) Time ²	(d) √(Time).

(x) In a flow react	c) In a flow reactor in the SS accumulation rate is						
(a) Zero	(b) Negative	(c) Positive	(d) Infinite.				

Group – B

2.(a) Define Schmidt number and Prandtl number and prove that both are dimensionless.

(b) The dynamic method is used to measure K_La in a fermenter operated at **30°C**. Data for DO concentration as a function of time during the re-oxygenation step is as follows:

Time (Sec)	10	15	20	30	40	50	70	100	130
C _{AL} (% air saturation)	73.5	53.5	60.0	67.5	70.5	72.0	73.0	73.5	70.5

The equilibrium concentration of oxygen in the broth is $7.9 \times 10^{-3} \text{ kg/m}^3$. Determine K_La. 5+7=12

- 3.(a) Discuss the different types of non-Newtonian fluids with example. Draw their shear stress and strain diagram on the basis of power law model.
 - (b) Describe the dynamic method of determination of K_La for aerobic fermentation.

6+6=12

Group - C

- 4.(a) Describe the scale-up criteria of a bioreactor.
 - (b) Consider the scale up of fermentation from a 10L to 10,000L vessel. The small fermenter has a height to diameter ratio of 3. The impeller diameter is 30% of the tank diameter. Agitator speed is 500 rpm and three impellers are used. Determine the dimensions of the large fermenter and agitator speed for constant P/V and constant impeller tip speed.

4+8=12

- 5.(a) Define autocatalytic reaction.
 - (b) Derive rate equation for an autocatalytic reaction.
 - (c) For the decomposition of $A \rightarrow R$, $C_{A0} = 1.0$ mol/lit. In a batch reactor conversion is 75% after one hour, and is just complete after two hours. Find the rate equation.

2+4+6=12

Group - D

- 6. Write a short note on:
 - (i) Animal cell bioreactor (ii) Hollow fibre reactor.

2

6+6 = 12

BIOT 5204

M.TECH/BT/2ND SEM/BIOT 5204/2015

7.(a) Describe different special type of bioreactors used in solid state fermenter.

(b) Which bioreactors are used for algal culture? Discuss any one of them.

6+6=12

Group – E

- 8.(a) What do you mean by impeller Reynold's number? How impeller Reynold's number related to power number?
 - (b) Cells are growing in a fermenter. A value of $K_{La} = 30 \text{ hr}^{-1}$ has been determined for a fermenter at its maximum rotational speed and with air being sparged at 0.5 lit gas per lit. medium volume per min (0.5 vvm) with a qo₂ of 10 m moles O₂ /gm dry wt. hr are to be cultured. The critical D.O conc. is 0.2 mg/lit. The solubility of oxygen from air in the fermenter broth is 7.3 mg/lit at 30 °C. What maximum conc. of cells can be sustained in the fermenter at aerobic condition?

(3+3)+6=12

9. Explain significance of D.O in bioreactors. Discuss types of D.O probes available. Explain in brief operating principles of each type of D.O probes. What is drift? What causes drift? (2+2+3+3+2)=12