B.TECH/BT/5TH SEM/CSEN 3106/2016

DATA STRUCTURE & ALGORITHM (CSEN 3106)

1

CSEN 3106

DATA STRUCTURE & ALGORITHM (CSEN 3106)								(a) 0(n+9378) (c) n0(1)	(b) O(n³) (d) O(n²).	
Γir	ne Allo	otted : 3 hrs		I	Full Marks : 70		(ix)	The minimum number of edge vertices is	s required to create a cyclic grap	oh of n
Figures out of the right margin indicate full marks. Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group. Candidates are required to give answer in their own words as far as practicable. Group – A (Multiple Choice Type Questions)								(a) 2n (b) n-1	(c) n+1	(d) n.
							(x)	When inorder traversing a tree resulted E A C K F H D B G; the preorder traversal would return		
								(a) FAEKCDBHG (c) FAEKCDHGB	(b) EAFKHDCBG (d) FEAKDCHBG	
							Group - B			
						2.	2. (a)	Write an algorithm to find the sum of the following series up to nth		
1.	Choose the correct alternative for the following: $10 \times 1 = 10$						<i>a</i> >	term while n will be supplied as user input: a2/3, a4/5, a6/7, What will be the address of the floating point element present at 5th		
	(i)	What is the best case time complexity of Merge Sort? (a) $O(n)$ (b) $O(n \log n)$ (c) $O(n^2)$ (d) $O(\log n)$.					(b)		e floating point element present matrix having a base address 20	
	(ii)	Quick sort running time depends on the selection of (a) size of array (b) pivot element (c) sequence of values (d) none of the above.					(c)	What is a sparse matrix? State with example. When it is advantageous to use it over normal matrix? $5+3+(2+2)=12$		
	(iii)	Re-balancing of				3.	(a)	Why linked list is called linear	data structure?	
		(a) 0(1)	(b) O(log n)		(d) $O(n^2)$.		(b)	What are the major advantages a	nd disadvantages of linked list over	array?
	(iv) How many swaps are required to sort the given array using bubble sort - {2, 5, 1, 3, 4}?					(c)	Write an algorithm to delete an element from a doubly linked list. The position of the element will be supplied by the user.			
	(v)	(a) 5 (b) 6 (c) 7 (d) 4. Which of the following searching techniques do not require the data to be in sorted form?					(d)	What is the advantage of using a	doubly linked list over singly linked $2 + 4 + 4 + 2$	
	(a) Binary Search (b) Interpola (c) Linear Search (d) All of the						Group	– C		
	 (vi) In a min-heap (a) parent nodes have values greater than or equal to their child nodes (b) parent nodes have values less than or equal to their child nodes (c) both statements are true (d) both statements are wrong. (vii) A complete binary tree of level 5 has how many nodes? 					4.	(a)	Convert following infix express ((a+b)/d-((e-f)+g))	sion to postfix expression:	
							(b)	Explain Deletion operation for queue with algorithm		
							(c)	Write a short note on circular	queue. 5 + 4 + 3	3 = 12
	(vii)	A complete bina (a) 15	ary tree of level 5 has (b) 25	how many nodes (c) 63	? (d) 30.	5.	(a)	Compare recursion and iteration	on. Which one is better and why?	?

CSEN 3106

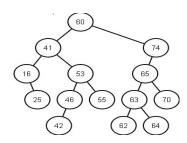
B.TECH/BT/5TH SEM/CSEN 3106/2016

(viii) Which of the following asymptotic notation is the worst among all?

2

B.TECH/BT/5TH SEM/CSEN 3106/2016

- (b) Explain tail recursion with example.
- (c) Write recursive function for computing Fibonacci Series and GCD.


$$(2+2)+4+(2+2)=12$$

Group - D

6. (a) Define complete Tree. Insert the following elements into a binary search tree:

45, 29, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81

(b)

Traverse the above tree using pre-order, in-order and post-order traversal algorithm.

$$(2+4)+(2+2+2)=12$$

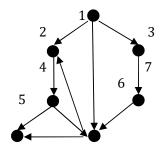
- 7. (a) Write short note on B-Tree?
 - (b) What is the critical node in AVL tree? Explain with example.
 - (c) Write an algorithm to delete an element from BST.

$$5 + 3 + 4 = 12$$

Group - E

- 8. (a) Write an algorithm to sort a set of elements using merge sort.
 - (b) "Quick sort is not at all quick in some cases" Justify the statement.
 - (c) Why insertion sort is called online sort? Explain with example.
 - (d) What is the time complexity of binary search and why the value is so?

$$6 + 3 + 2 + 1 = 12$$


- 9. (a) What is collision? How it can be resolved?
 - (b) What is the time complexity of bubble sort? Can you implement the bubble sort in such a way, so that, the best case time complexity

B.TECH/BT/5TH SEM/CSEN 3106/2016

becomes O(n) where n is the size of input.

(c) For the following graph, find (i) bfs traversal, (ii) dfs traversal.

4

(2+3)+(1+3)+3=12