B.TECH/BT/5TH SEM/BIOT 3104/2016

TRANSFER OPERATION II (BIOT 3104)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

(i)	is concerned with the adsorption equilibria.							
	(a) Fick's law	(b) Gibb's equation						
	(c) Freundlich equation	(d) none of these.						

For a fixed number of ideal stages in a distillation column, as the (ii) reflux ratio is increased, the difference in composition between the top and bottom product streams

(a) decreases (b) increases (d) passes through a maximum. (c) remains unaffected

- During constant rate drying period, vaporisation rate per unit drying (iii) surface area
 - (a) increases with time
 - (b) decreases with time
 - (c) does not change with time

(d) does not affect the moisture content of the wet solid.

Consequence of concentration polarization is (iv)

- (a) solvent diffuses back from the membrane surface to the solution
- (b) solute diffuses back from the membrane surface to the solution
- (c) rate of diffusion increases
- (d) none of the above.
- Plate efficiency (v)
 - (a) is a function of the mass transfer between liquid and vapour.
 - (b) increases due to foaming.
 - (c) increases due to liquid entrainment.
 - (d) increases due to weeping and dumping of liquid. 1

BIOT 3104

B.TECH/BT/5TH SEM/BIOT 3104/2016

- Which of the following is not a membrane separation process? (vi) (a) Ultra-filtration (b) Chromatography (c) Flash distillation (d) Pervaporation.
- (vii) Molecular diffusion induced by temperature is (a) eddy diffusion (b) thermal diffusion (c) forced diffusion (d) none of the above.
- (viii) In absorption minimum operating line (a) touches the equilibrium line (b) has a slope of $(L/V)_{min}$

 - (c) shows the maximum possible liquid concentration
 - (d) all the above.
- (ix) Diffusivity of a liquid is 5 to 6 orders less than that of a gas because (a) diffusion of liquids occur by random motion of molecules.
 - (b) average distance travelled by liquid molecules is less than their molecular diameter.
 - (c) mean free path travelled by a gas is less than that of a liquid molecule.
 - (d) none of the above.
- (x) Separation of inorganic salts of low molecular weight is done by (a) Reverse osmosis (b) Ultra-filtration (c) Dialysis (d) Electrophoresis.

Group - B

A tray tower is to be designed to absorb SO_2 from an air stream by using pure water at 293K. The entering gas contains 20mol% SO₂ and that leaving gas contains 2mol% SO₂ at a total pressure of 101.3kPa. The inert air flow rate is 150kgair/h.m², and the entering water flow rate is 6000kg water/h.m². Assuming an overall tray efficiency of 25%, how many theoretical trays are needed? What should be the number of trays actually to be employed? Assume the tower to operate at 293K and equilibrium relationship is given by y*= 20x.

12

3. (a) CO_2 and O_2 experience equimolal counter diffusion in a circular tube whose length and diameter are 1m and 50mm respectively. The total pressure is 10atm and temperature is 25°C. The ends of the tube are connected to large chambers in which the species concentration are

2.

6.

8.

maintained at fixed values. The partial pressure of CO₂ at one end is

190mm of Hg and at the other end 95mm of Hg.

- (i) Estimate the rate of mass transfer.
- (ii) Find the partial pressure of CO_2 at a distance 0.75m from the end where the partial pressure is 190mm of Hg. $D_{AB} = 2.1 \times 10^{-5} \text{m}^2/\text{s}$.
- (b)Diffusivity of CCl_4 through O_2 is determined in a steady state evaporating cell. The cell having cross sectional area 0.82cm². It was operated at 273K and 755mm Hg. The average length of diffusion path was 17.1cm. If 0.0208cm³ of CCl₄ was evaporated in 10h of steady state operation, what should be the value of diffusivity of CCl₄ through O_2 . Vapour pressure of CCl₄ at 273K = 33mm Hg. 7 + 5 = 12

Group - C

A batch of solid for which the following table of data applies, is to be 4. dried from 25% to 6% moisture under conditions identical to those for which the data were tabulated. The initial weight of the wet solid is 300 kg and the drying surface is $1 \text{ m}^2/8 \text{ kg}$ dry weight. Determine the time for drying.

X (kg moisture/ kg dry solid)	0.35	0.25	0.20	0.18	0.16	0.14	0.12	0.10	0.09	0.08	0.064
R (kg moisture evaporated / hr.m ²)	0.3	0.3	0.3	0.266	0.239	0.208	0.18	0.15	0.097	0.07	0.025
											12

5. A bubble cap fractionating column consisting of 12 plates working at an average efficiency of 75% is being used to distill 1000 kg/hr of aqueous methanol at its bubble point entering the tower. The feed, overhead product and bottom product are 50 mol%, 90 mol% and 10 mol% methanol, respectively. A total condenser is provided. The operating reflux ratio is 1.7 times of the minimum reflux ratio. Check, whether the column available is satisfactory or not. VLE data are:

Х	0.08	0.1	0.2	0.3	0.4	0.5	0.7	0.8	0.95
у	0.365	0.418	0.579	0.665	0.729	0.779	0.87	0.958	0.975
									1

Group - D

It is desired to separate by distillation a mixture of 42 mol% heptane and 58 mol% ethyl benzene to produce a distillate containing 97 mol % heptane and a residue containing 99 mol % ethyl benzene.

(i) Using a reflux ratio of 2.5 determine the number of equilibrium stages needed for a saturated liquid feed by McCabe Thiele method.

(ii) Determine the minimum reflux ratio.

The vapour liquid equilibrium data for heptanes-ethyl benzene system is

Х	0	0.08	0.185	0.251	0.335	0.489	0.651	0.788	0.914	1.0
У	0	0.233	0.428	0.514	0.608	0.729	0.814	0.904	0.963	1.0
	9 + 3 = 1							3 = 12		

7. (a) Derive Raleigh equation for Batch distillation.

(b) Describe the function of packed type extraction tower.

6 + 6 = 12

Group - E

Experiments at 25°C were performed to determine the permeabilities of a cellulose-acetate membrane. The laboratory test section has membrane area A = $2.0 \times 10^{-3} \text{m}^2$. The inlet feed solution concentration of NaCl is $C_1 = 10$ kg NaCl/m³ solution (density= 1004kg solution/m³). The water recovery is assumed low so that the concentration C_1 in the entering feed solution flowing past the membrane and the concentration of the exit feed solution are essentially equal. The product solution contains $C_2 = 0.39$ kg NaCl/m³ solution (density = 997kg solution/m³) and its measured flowrate is 1.92×10^{-8} m³ solution/s. A pressure differential of 54.42 atm is used. Calculate the permeability constants of the membrane and the solute rejection R(π = 7.48 atm).

12

9. (a) In a cross flow ultra filtration system used for filtration of proteins from a fermentation broth, gel resistance increases with protein concentration according to the following equation:

 $R_G = 0.5 + 0.01C$, where C is in mg/L.

4

B.TECH/BT/5TH SEM/BIOT 3104/2016

Pressure at the entrance system is $P_i = 6$ atm and at the exit is $P_0 = 2$ atm. The shell side of the filter is open to the atmosphere, resulting in $P_f = 1$ atm. The membrane resistance is $R_M = 0.5$ atm / (mg/m².h), and the protein concentration in the broth is C = 100 mg/L. Determine:

(i) The pressure drop across the membrane

(ii) Filtration flux

- (iii)Rejection coefficient of the membrane for effluent protein concentration of $C_i = 5 \text{ mg/L}$.
- (b) Write short notes on any two membrane separation process applied in biotechnology.

6 + 6 = 12