B.TECH/CSE(AI&ML)/6TH SEM/CSEN 3239/2024

INTRODUCTION TO CRYPTOGRAPHY (CSEN 3239)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

C

1.

	ver any twelve: <i>Ch</i>				
	Ch			$12 \times 1 = 12$	
		oose the correct o	alternative for the f	ollowing	
(i)	SHA-1 production (a) 256 bits (c) 180 bits	ces a hash value c	of (b) 160 (d) 124		
(ii)	Find 3 ²⁰¹ mod (a) 3	l 11 = (b) 5	(c) 6	(d) 10	
(iii)		get cipher text i	(b) nla	her System using the keyworzeiibljii zeiibljii aeiibljki	rd
(iv)	Public key cry to (a) speed (c) key exchar		(b) spa	mmetric key Cryptography do ce length	ue
(v)	with the N communication the group.	-1 others using on between any the number of liality requiremen	g symmetric key wo persons should keys required in th	wants to communicate secret cryptographic system. The not be decodable by the othe te system as a whole to satis (d) (N-1) ²	he ers
(vi)	An attack on possible perm (a) Brute-Plai	a cipher text nutations and con	nessage where the nbinations is called (b) Bir	e attacker attempts to use a	all
(vii)	bits	_	-	_ bits and the Round Input (d) 32, 32	is

(viii)	Which algorithm is susceptible to Bucket (a) Diffie-Hellman (c) Triple DES	t Brigade attack? (b) Double DES (d) RSA			
(ix)	How can we avoid man-in-the-middle att (a) Accept every SSL certificate, even the (b) Use connections without SSL. (c) Use HTTPS connections and verify the (d) None of the above.	broken ones.			
(x)	The Authentication Header (AH) protocol, part of IPSec, provides which of the following security functions? (a) Source authentication (b) Data integrity (c) Data confidentiality (d) Source authentication and data integrity.				
	Fill in the blanks with th	he correct word			
(xi)	In the digital signature technique, the sender of the message usescreate the cipher text.				
(xii)	In cryptography, the order of the letters in a message is rearranged by				
(xiii)	IPSec services are available in layer.				
(xiv)	When two different message-digests have the same value, it is called				
(xv)	The minimum positive integer p such that	at 3p modulo 17 = 1 is			
	Group - B				
(a) (b) (c)	Explain Fermat's theorem with proper ex Evaluate gcd(1547,560) using Euclid's all and its application. Find multiplicative inverse of 5 mod 11 u	lgorithm. Define Euler's totient function [(CO2)(Evaluate/10CQ)]			
(a) (b)	Find 8-1 mod 77 (multiplicative inverse) using Euler's theorem? [(CO2)(Apply/IOCQ)] Solve $x = 3 \pmod{5}$, $x = 1 \pmod{7}$, $x = 6 \pmod{8}$ using Chinese Remainder Theorem				
(c)	How many primate roots are there in more root modulo 13. What are the other primate roots are the other primate roots are the other primate roots.				
	Group - C				
(a) (b)	Discuss principles of security. Explain HMAC algorithm with suitable di	[(CO1)(Remember/LOCQ)] iagram. [(CO4)(Remember/LOCQ)]			

2.

3.

4.

(c) Discuss the pros and cons of symmetric and asymmetric key cryptography.

[(CO1)(Understand/LOCQ)]

3 + 6 + 3 = 12

5. (a) Encrypt the message "COMSEC means communications security" with the key word "GALOIS" using Polygraphic Substitution Ciphers (Playfair Cipher).

[(CO5,CO1)(Analyse/HOCQ)]

(b) Decrypt the message "TRLEELIGCIGEHALANTNCTECYENEN" with the keyword "ANALYST" using simple columnar transposition technique.

[(CO5,CO1)(Understand/LOCQ)]

(c) Explain the following algorithm modes with neat diagram: (i) Electronic code book mode (ii) Cipher block chaining mode. [(CO3)(Explanation/IOCQ)]

4 + 2 + 6 = 12

Group - D

- 6. (a) Explain the Diffie-Hellman Key Exchange Algorithm. Alice and Bob want to establish a secret key using the Diffie-Hellman Key Exchange Algorithm. Assuming the values as q = 11 and a primitive root alpha=7, find out the values of the secret keys K1 and K2. [(CO5)(Evaluate /HOCQ)]
 - (b) Explain man in the middle attack with a suitable example. [(CO5)(Analyze/LOCQ)]
 - (c) What do you mean by Public key Cryptosystem? [(CO4)(Remember/IOCQ)]

5 + 5 + 2 = 12

- 7. (a) Given p=17, q=11, and e=7 use RSA algorithm to find n, d, Public and Private Key. [(CO4,CO5)(Evaluate/HOCQ)]
 - (b) Explain ElGamal public key cryptosystem. [(CO4)(Remember/LOCQ)]
 - (c) What is the key distribution problem? [(CO5)(Understand/LOCQ)]

6 + 5 + 1 = 12

Group - E

8. (a) Write an algorithm to generate a digital signature using the RSA algorithm

[(CO4)(Remember/LOCQ)]

- (b) State the possible attacks on RSA signature. [(CO5)(Remember/LOCQ)]
- (c) State how DSA can be used to generate the digital signature. [(CO4)(Apply/IOCQ)]

5 + 3 + 4 = 12

9. (a) Differentiate between transport and tunnel modes of operation of IPSec.

[(CO6)(Understand/LOCQ)]

- (b) Write a short note on Intrusion Detection. [(CO6)(Remember/LOCQ)]
- (c) Discuss General IPSec ESP packet format. [(CO6)(Remember/LOCQ)]

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	62.5	21.87	15.63

Course Outcome (CO):

After the completion of the course students will be able
--

	I security architecture	

- CSEN3239.2 Acquire fundamental knowledge on the concepts of finite fields and number theory.
- CSEN3239.3 Understand various block cipher and stream cipher models.
- CSEN3239.4 Describe the Principles of public key cryptosystems, hash functions and digital signature.
- CSEN3239.5 Learn about various cryptographic techniques, which include private and public keys algorithms along with attacks types.
- CSEN3239.6 Understand authentication requirements and study various authentication mechanisms.

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.