2016

MATHEMATICS 1

(MATH 1101)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $[10 \times 1 = 10]$

i)The rank of
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$$
 is a) 3 b) 1 c) 2 d) 0

- ii) If A be an orthogonal matrix then A^{-1} is
- a) Symmetric b) Skew-symmetric c) Orthogonal d) Idempotent
- iii) Every scalar matrix is
 - a) diagonal b) symmetric c) skew-symmetric d) orthogonal
- iv) In M.V.T $f(h) = f(0) + h f'(\theta h)$, $0 < \theta < 1$, if $f(x) = \frac{1}{1+x}$ and h = 3; then value of θ is:
- a) 1 b) $\frac{1}{3}$ c) $\frac{1}{\sqrt{2}}$ d) none of these
- v) The series $\sum \frac{2^n}{e^n}$ is
 - a) oscillatory b) divergent c) convergent d) nothing can be said

vi) Which of the following does not satisfy Rolle's Theorem in [-2, 2] ?

a)
$$x^2$$
 b) $\frac{1}{x-1}$ c) x

d) none of these

vii) The sequence
$$\left\{\frac{n}{1+n^2}\right\}$$
 is

a) convergent b) divergent

c) oscillatory

d) none

viii) If
$$f(x,y) = \frac{x}{y} + \frac{y}{x}$$
 then $xf_x + yf_y =$

d)
$$f(x,y)$$

ix) The series $\sum \frac{1}{n^p}$ is convergent if

b)
$$p = 0$$

a)
$$p < 1$$
 b) $p = 0$ c) $p > 1$ d) $p = 1$

x) The value of $\int_0^{\pi/2} \sin^5 x \cos^6 x \, dx$ is

a)
$$\frac{2}{693}$$

b)
$$\frac{8}{693}$$

a)
$$\frac{2}{693}$$
 b) $\frac{8}{693}$ c) $\frac{4}{693}$ d) $\frac{8\pi}{693}$

d)
$$\frac{8\pi}{693}$$

GROUP - B

a) Prove that

$$\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc(a+b+c)^3$$

- b) Prove that orthogonal matrices are non-singular.
- c) Find the rank of the following matrix.

6+2+4=12

3 a) Verify Cayley Hamilton theorem for Hence find
$$A^{-1}$$

$$\begin{bmatrix}
1 & -2 & 2 \\
1 & 2 & 3 \\
0 & -1 & 2
\end{bmatrix}$$

b) Solve by matrix method, the equations

$$x + y + z = 8$$
$$x - y + 2z = 6$$

$$3x + 5y - 7z = 14$$

6+6=12

GROUP - C

- 4 a) If $x_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n+1)}$ then show that $\{x_n\}$ is a bounded monotonic increasing sequence.
 - b) Verify the Rolle's theorem for the function $f(x) = x^3 6x^2 + 11x 6$ in [1,3]
 - c) Prove that the series $x \frac{x^2}{2} + \frac{x^3}{3} \cdots$ is absolutely convergent, when |x| < 1 and conditionally convergent when |x| = 1 4+3+5=12
- 5 a) Using Lagrange's Mean Value Theorem prove that $\frac{2x}{1-x^2} > \log \left(\frac{1+x}{1-x}\right) > 2x , \ 0 < x < 1$
 - b) For what values of x, the following series is convergent

$$\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{5.7} + \cdots$$

6+6=12

GROUP - D

6 a) if $u = \cos^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$

b) If
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u,v)}{\partial(x,y)}$

6+6=12

7 a) Find the maxima and minima of the function

$$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

b) if $y = e^{ax} \cos bx$, then show that

 $y_n = (a^2 + b^2)^{n/2} e^{ax} \sin(bx + n \tan^{-1} b/a)$ where a and b are non-zero constants. 6+6=12

GROUP - E

- a) Find the maximum value of the directional derivative of $\phi = x^2 + y^2 + z^2$ at the point (1,2,3). Find also the direction in which it occurs.
 - b) Evaluate $\iint_D (4xy y^3) \, dx \, dy$, D is the region bounded by $y = \sqrt{x}$, $y = x^3$

6+6=12

- 9 a) Verify Green's theorem in the plane for $\oint_c \left[(xy + y^2) dx + x^2 dy \right]$ where C is the closed curve of the region bounded by y = x and $y = x^2$
 - b) Use Divergence theorem to evaluate $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S}$, where $\overrightarrow{F} = xy \ \hat{\imath} \frac{y^2}{2} \ \hat{\jmath} + z \hat{k}$ and the surface consists of the three surfaces $z = 4 3x^2 3y^2 \ 1 \le z \le 4$ on the top, $x^2 + y^2 = 1$, $0 \le z \le 1$ on the sides and z = 0 at the bottom.

6+6=12