#### MCA/1<sup>ST</sup> SEM/ MCAP 1104/2016

(vii) Find the rank of the word LATE when the letters are arranged as in dictionary (a) 13 (b) 14 (c) 15 (d) 16. How many ways can 6 boys form a ring? (viii) (b) 120 (c) 96 (a) 24 (d) 720. 3x-4, x>0 If the function f:  $R \rightarrow R$  is defined as  $f(x) = -\frac{1}{2}$ (ix) -3x+2, x<0 Then  $f^{-1}(2)$  is equal to (c) {2, -2}  $(a) \{2\}$ (b) {0, 2} (d) none of these. The generating function of the sequence {0, 1, 0, -1, 0, 1, 0, -1, 0, ....} is (x)

(a) 
$$\frac{1}{1+x^2}$$
 (b)  $\frac{x}{1+x^2}$  (c)  $\frac{x^2}{1+x^2}$  (d) none of these.

### Group - B

- 2. (a) (i) Prove that in the set of natural numbers, the relation 'x is multiple of y' is an equivalence relation.
  (ii) Show that (p ∨ q) ∧ (~p ∧ ~q) is a contradiction.
  - (b) Show that the mapping is  $f: \mathbb{N} \times \mathbb{N}$  defined by  $f(n) = n (-1)^n$ ,  $n \in \mathbb{N}$  is bijective.

(4+3)+5=12

- 3. (a) If  $A \Delta B = A \Delta C$ , then prove that B=C (where A, B, C are any three nonempty sets).
  - (b) Show that, the set of vectors  $\{(1, 2, 2), (2, 1, 2), (2, 2, 1)\}$  is linearly independent in R<sup>3</sup>.
  - (c) Let L be the set of all lines in 3D space and R be a binary relationship on L, such that, two lines 11 and 12 are related, iff 11 lies on the plane containing 12. Test whether the relationship is Reflexive, Symmetric, Transitive.

3 + 3 + 6 = 12

# Group - C

4. (a) i) Find the coefficient of x<sup>5</sup> in (x<sup>2</sup> + x<sup>3</sup> + x<sup>4</sup> + ...)<sup>4</sup>.
ii) Solve the recurrence relation: a<sub>n</sub> - 7a<sub>n-2</sub> + 6a<sub>n-3</sub> = 0 with initial conditions, a<sub>0</sub> = 8, a<sub>1</sub> = 6 and a<sub>2</sub> = 22 using generating function.

### MCA/1<sup>st</sup> SEM/ MCAP 1104/2016

- (b) Out of 5 males and 6 females, a committee of 5 is to be formed. Find the number of ways in which it can be formed, so that among the persons chosen in the committee there are
  - i) Exactly 3 males and 2 females.
  - ii) At least 2 males and 1 female.

(3+4)+5=12

- 5. (a) Prove that, if any 30 people are selected, we may choose a subset of 5, so that all of them were born on the same day of the week.
  - (b) Find the Generating function for the numeric function  $0 < n + n^2 > \infty$ .
  - (c) Using generating function solve the recurrence relation  $a_n 7a_{n-1} + 10a_{n-2} = 0$  for all n > 1 and  $a_0 = 3$  and  $a_1 = 3$ .

3 + 4 + 5 = 12

#### Group - D

- 6. (a) Prove that a tree with n number of vertices has (n 1) number of edges.
  - (b) Let G be a simple connected Planar graph with n vertices, e edges and f regions then prove that (i)  $e \ge 3f / 2$  (ii)  $e \le 3n 6$ . 4 + (4 + 4) = 12
- 7. (a) Prove that a simple graph with n vertices and k components can have at most (n k) (n k + 1) / 2 edges.
  - (b) How many internal vertices does a full binary tree with h levels has? Apply Kruskal's algorithm to find the minimal spanning tree of the following weighted graph.



5 + (2 + 5) = 12

### Group - E

8. (a) Define grammar of a language and the types. Give an example of a grammar which is Type 2 but not Type 3.

MCAP 1104

3

2

#### MCA/1<sup>st</sup> SEM/ MCAP 1104/2016

- (b) Construct a grammar generating the following language: L = {  $\omega \in \{a, b\}^* : \omega$  is a palindrome }
  - (2+3)+7=12
- 9. (a) i) Define Mealy machine and Moore Machine.
  - ii) Construct a Moore Machine from the following Mealy machine:

|                       | Next State     |        |                       |        |
|-----------------------|----------------|--------|-----------------------|--------|
| Present<br>State      | a = 0          |        | a = 1                 |        |
|                       | State          | Output | State                 | Output |
| S <sub>0</sub>        | S <sub>0</sub> | 1      | <b>S</b> <sub>1</sub> | 0      |
| S <sub>1</sub>        | S <sub>3</sub> | 1      | S <sub>3</sub>        | 1      |
| <b>S</b> <sub>2</sub> | S <sub>1</sub> | 1      | S <sub>2</sub>        | 1      |
| <b>S</b> <sub>3</sub> | S <sub>2</sub> | 0      | S <sub>0</sub>        | 1      |

(b) Consider the grammar G with V = {S, A, B},  $\sum = \{a, b\}$ , and P = {S  $\rightarrow$  AB, S  $\rightarrow$  bA, A  $\rightarrow$  a, B  $\rightarrow$  ba}. Find L (G).

(2 + 5) + 5 = 12

### MCA/1<sup>st</sup> SEM/MCAP 1104/2016

## DISCRETE MATHEMATICS (MCAP 1104)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

# Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

```
10 \times 1 = 10
```

| (i)   | <ul> <li>A relationship set is called partially ordered set if it is</li> <li>(a) reflexive, symmetric and transitive</li> <li>(b) symmetric, transitive and antisymmetric</li> <li>(c) reflexive, transitive and antisymmetric</li> <li>(d) reflexive and symmetric and antisymmetric.</li> </ul> |                                                                                                                                                                      |                                           |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| (ii)  | The coefficient of x <sup>5</sup> in the expan<br>(a) C(9,5) (b) C(5,9)                                                                                                                                                                                                                            | sion of (x <sup>3</sup> +x <sup>4</sup> +x <sup>5</sup> +) <sup>5</sup> is<br>(c) C(5,5) (d) C(9,                                                                    | 9).                                       |  |  |
| (iii) | What is the maximum number of<br>(a) n(n+1)/2<br>(c) n <sup>2</sup> /2                                                                                                                                                                                                                             | edges in a Graph G with n vertice<br>(b) n(n-1)/2<br>(d) (1+n+n <sup>3</sup> )/3.                                                                                    | es?                                       |  |  |
| (iv)  | ${a,b} ≤ V_T$ and S ∈ V <sub>N</sub> , then S → ab<br>(a) type-0 grammar<br>(c) type-2 grammar                                                                                                                                                                                                     | is a<br>(b) type-1 grammar<br>(d) type-3 grammar.                                                                                                                    | (b) type-1 grammar<br>(d) type-3 grammar. |  |  |
| (v)   | Six boys and four girls can sit in a<br>(a) 6! × 4! ways<br>(c) 2 <sup>24</sup> ways                                                                                                                                                                                                               | w in<br>(b) 2 × 6! × 4! ways<br>(d) none of these.                                                                                                                   |                                           |  |  |
| (vi)  | Let $A=\{1, 2, 3, 4,, 8, 9\}$ , $B=\{2, 4, 6, E=\{3, 5\}$ . Then which set can eq information?<br>(a) X and B are disjoint                                                                                                                                                                         | 5, 8}, C={1, 3, 5, 7, 9}, D={3, 4, 5}<br>and X, if we are given the follow<br>(b) $X \subseteq A$ but $X \not\subset C$<br>(d) $X \subseteq C$ but $X \not\subset A$ | and<br>ving                               |  |  |