MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 2¹/₂ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 4 (four)</u> from Group B to E, taking <u>one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

1. Answer any twelve:

 $12 \times 1 = 12$

Choose the correct alternative for the following

(i)	The singular point of the ordinary differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 4y = 0$		
	(a) is 0 (b) is 1 (c) c	loes not exist (d) is -1 .	
(ii)	The partial differential equation $\frac{\partial^2 z}{\partial x^2} = \left(\frac{\partial z}{\partial y}\right)^{\frac{1}{3}} + 3$ is of		
	(a) order 3, degree 2 (c) order 2, degree 2	(b) order 2, degree 3 (d) order 3, degree 3.	
(iii)	A function which satisfies Dirichlet's condition can be represented as an infinite series of		
	(a) algebraic functions(c) exponential functions	(b) sinusoidal functions (d) logarithmic functions.	
		(u) logar tunnic functions.	
(iv)	$\frac{d}{dx}\left\{x^4 J_4(x)\right\} =$		
	(a) $x^4 J_5(x)$	(b) $x^4 J_3(x)$ (d) $-x^3 J_4(x)$.	
	(c) $x^3 J_4(x)$	(d) $-x^3 f_4(x)$.	
(v)	If $f(z) = \frac{z-3}{z(z+1)}$, then the point $z = 0$ is		
	(a) a removable singularity	(b) an isolated singularity	
	(c) an essential singularity	(d) a simple pole.	
(vi)	Conjugate harmonic of $e^x \cos y$ is		
	(a) $e^{-x} \cos y$	(b) $-e^x \sin y$ (d) $e^{-x} \sin y$	
	(c) $e^x \sin y$	(d) $e^{-x} \sin y$.	
(vii)			
	(a) $\frac{d}{ds}$ {F(s)}	(b) $i \frac{d}{ds} \{F(s)\}$	
	(c) $-i\frac{d}{ds}\{F(s)\}$	(d) $\frac{d}{ds}$ {sF(s)}.	

Full Marks : 60

- (viii) Bessel's equation of order zero is (a) xy'' + y' - xy = 0(b) xy'' + y' = 0(c) xy'' - y' + xy = 0(d) xy'' + y' + xy = 0.
- (ix) If $3y 5x^2 + my^2$ is a harmonic function, then the value of *m* is (a) 2 (b) 3 (c) 5 (d) 0.

(x) The solution of the partial differential equation $z = px + qy + \frac{1}{p+q}$ is (where a, bare arbitrary constants, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$) (a) $z = ax + by + \frac{1}{a+b}$ (b) $z = ax + by + \frac{1}{a-b}$ (c) z = ax + by - ab (d) $z = ax - by + \frac{1}{a+b}$.

Fill in the blanks with the correct word

- (xi) If $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of $f(x) = \frac{1}{4} (\pi x)^2$, then a_0 is _____.
- (xii) One dimensional Heat equation is _____.
- (xiii) If *C* be the circle |z| = 1, then $\int_C \frac{\cos 2z}{z \frac{\pi}{6}} dz$ is _____.
- (xiv) The value of $J_{\frac{1}{2}}^2(x) + J_{-\frac{1}{2}}^2(x)$ is _____.
- (xv) The particular integral of $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 6 \frac{\partial^2 z}{\partial y^2} = \sin(x+y)$ is _____.

Group - B

- 2. (a) Show that the function $f(z) = \begin{cases} \frac{2xy(x+iy)}{x^2+y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ satisfies the Cauchy-Riemann equations at z = 0, although f(z) is not analytic at the origin. [(MATH2001.1, MATH2001.2)(Analyse/IOCQ)]
 - (b) Evaluate: $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$ on the circle C: |z-i| = 3. [(MATH2001.1,MATH2001.2)(Evaluate/HOCQ)] 6+6=12
- 3. (a) Expand the function $f(z) = \frac{\sin z}{z}$ in Laurent's series about the point z = 0. Hence classify the type of the singular points of f(z).

(b) Use Cauchy's residue theorem to evaluate the integral $\oint_C \frac{e^z - 1}{z(z-1)(z-i)^2} dz$, where *C* is the circle |z| = 2. [(MATH2001.1, MATH2001.2)(Understand/LOCQ)] is the circle |z| = 2. [(MATH2001.1, MATH2001.2) (Apply/IOCQ)] 6 + 6 = 12

Group - C

4. (a) Find the Fourier series of the following function in $[-\pi, \pi]$.

$$f(x) = \begin{cases} 0, & \text{for } -\pi < x \le 0, \\ \frac{\pi x}{4}, & \text{for } 0 < x < \pi. \end{cases}$$

How f(x) would be defined at x = 0 so that the series converges to f(x). [(MATH2001.1, MATH2001.3, MATH2001.4)(Evaluate/HOCQ)] Evaluate the inverse Fourier transform of $f(s) = \frac{1}{s^2+4s+13}$.

(b) [(MATH2001.1, MATH2001.3, MATH2001.4)(Remember/LOCQ)] 6 + 6 = 12

- Find half range cosine series of $f(x) = \begin{cases} \pi x, & 0 < x < 1 \\ \pi(2 x), & 1 \le x < 2 \end{cases}$ 5. (a) Hence using Parseval's identity show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$ [(MATH2001.1, MATH2001.3, MATH2001.4) (Apply/IOCQ)]
 - (b) Find the Fourier transform of $f(x) = \begin{cases} x^2, & \text{for } |x| < a, \\ 0, & \text{for } |x| \ge a. \end{cases}$

[(MATH2001.1, MATH2001.3, MATH2001.4) (Apply/IOCQ)] 6 + 6 = 12

Group - D

Find the series solution of the following ordinary differential equation: 6. (a) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + x^2y = 0$, about x = 0. Express $I_4(x)$ in terms of $I_0(x)$ and $I_1(x)$. (b)

[(MATH2001.5)(Evaluate/HOCQ)] [(MATH2001.5)(Remember/LOCQ)] 8 + 4 = 12

Define the Bessel's function of 1st kind of order n and hence prove that 7. (a) $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$ [(MATH2001.5)(Apply/IOCQ)]

Prove that $(2n+1)x P_n(x) = (n+1) P_{n+1}(x) + n P_{n-1}(x)$, where $P_n(x)$ denotes (b) the Legendre polynomial of degree *n*. [(MATH2001.5)(Apply/IOCQ)] 6 + 6 = 12

Group - E

8. Form a partial differential equation by eliminating arbitrary function ϕ from the (a) relation $\phi(x + y + z, x^2 + y^2 + z^2) = 0$. [(MATH2001.1,MATH2001.6)(Understand/LOCQ)]

Use Charpit's method to find a complete integral of the partial differential (b) equation $2xz - px^2 - 2qxy + pq = 0$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

[(MATH2001. 1,MATH2001. 6)(Apply/IOCQ)] 6 + 6 = 12

9. Solve the partial differential equation: (a) $x(y^2 - z^2)p - y(z^2 + x^2)q = z(x^2 + y^2)$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. [(MATH2001. 1, MATH2001. 6)(Apply/IOCQ)]

[(MATH2001.1, MATH2001.6)(Remember/LOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	29.17	50	20.83

Course Outcome (CO):

After the completion of the course students will be able to

- MTH1101.1 Apply the concept of rank of matrices to find the solution of a system of linear simultaneous equations.
- MTH1101.2 Develop the concept of eigen values and eigen vectors.
- MTH1101.3 Combine the concepts of gradient, curl, divergence, directional derivatives, line integrals, surface integrals and volume integrals.
- MTH1101.4 Analyze the nature of sequence and infinite series
- MTH1101.5 Choose proper method for finding solution of a specific differential equation.
- MTH1101.6 Describe the concept of differentiation and integration for functions of several variables with their applications in vector calculus.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.