DIGITAL SYSTEMS DESIGN (ECEN 2002)

Time Allotted : 2¹/₂ hrs

Answer any twelve:

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 4 (four)</u> from Group B to E, taking <u>one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

Choose the correct alternative for the following

(i)	The race-around (a) J-K	condition does not (b) Master slave	coccur	in flip-flop (c) T	(d) N	one of these.
(ii)	The output of a ga (a) AND	ate is low if and on (b) XNOR	ly if al (c) N	l its inputs a OR	re high. It is (d) NAND	true for
(iii)	What will be the ((a) (215.66) ₈	octal equivalent of (b) (217.55) ₈	(1000	1111.10110 (c) (142.65)1) ₂ ?)8	(d) (515.76) ₈ .
(iv)	What is the minin (a) 3	num number of NA (b) 4	ND ga (c) 5	ites required	l to realize X (d) 6.	COR gate?
(v)	How many full adders are required to make n-bit parallel adder? (a) n (b) n+1 (c) n-1 (d) n/2.					
(vi)	How many flip flo (a) 3	ps are required to (b) 4	desig (c) 5	n a mod-10 d	counter? (d) 6.	
(vii)	A system has following negative numbers stored in 2's complement binary form as shown. The wrongly stored number is(a) -32 as 11100000(b) -37 as 11011011(c) -48 as 11101000(d) -89 as 10100111					
(viii)	The base of the nu (a) 8	umber system for t (b) 7	he add (c) 6	lition operat	ion 24+14=4 (d) 5.	1 to be true is
(ix)	The number of se (a) 8	lect lines required (b) 16	in a si (c) 32	ingle input a 2	nd 256 outp (d) 64	ut DEMUX is
(x)	A universal regist (a) accepts serial (c) gives serial an	er input d parallel outputs		(b) accepts (d) is capab	parallel inp le of all of th	ut 1e above.

Full Marks : 60

 $12 \times 1 = 12$

- (xi) If in a parallel counter, t_{pd} for each FF is 50ns and t_{pd} for each AND gate is 20ns the f_{max} will be _____.
- (xii) The logic family that dissipates minimum power is _____.
- (xiii) A mod-2 counter followed by a mod-5 counter is _____ counter.
- (xiv) A 10-bit DAC provides an analog output having maximum value of 10.23 volts. Resolution of the DAC is _____.
- (xv) The memory which is ultraviolet erasable and electrically programmable is _____.

Group - B

2.	(a)	Realise Y=(A+C)(A+D')(A+B+C') using NOR gates only.	[(CO1)(Analyse/HOCQ)]
	(b)	Perform (39)-(22) using 2's complement method.	[(CO1)(Analyse/HOCQ)]
	(c)	Perform BCD addition of $(592)_{BCD} + (754)_{BCD}$.	[(CO1)(Analyse/HOCQ)]
			4 + 4 + 4 = 12
3.	(a)	Minimize the Boolean function and realize using NAND gates	only
		$F(A, B, C, D) = \sum m(2,3,8,10,11,12,14,15) + \sum d(0,1).$	[(CO1)(Apply/IOCQ)]

(b) Minimize the Boolean function using tabular method $F(A, B, C, D) = \sum m(0, 1, 2, 6, 8, 9).$ [(CO4)(Remember/LOCQ)]

6 + 6 = 12

Group - C

4.	(a)	Design a full substractor using half substractor module	and necessary logic
		gates.	[(CO2)(Apply/IOCQ)]
	(b)	Design a BCD to excess-3 code converter circuit.	[(CO2)(Evaluate/HOCQ)]
			6 + 6 = 12
5.	(a)	Design MOD-3 synchronous UP counter using JK flip flop.	[(CO3)(Create/HOCQ)]
	(b)	Design a 4 bit parallel in serial out shift register.	[(CO3)(Create/HOCQ)]

6 + 6 = 12

Group - D

- 6. (a) What is the advantage of J-K flip-flop over S-R flip-flop? [(CO3)(Understand/LOCQ)]
 (b) Write the truth table, state table, excitation table and hence derive the chracteristics equation of J-K flip-flop. [(CO3)(Analyze/HOCQ)]
 (c) Realize D flip-flop using J-K flip-flop. [(CO3)(Apply/IOCQ)]
 2 + 6 + 4 = 12
- 7. (a) Explain the operation of successive approximation type ADC with circuit diagram. [(CO4)(Apply/IOCQ)]

[(CO4)(Remember/LOCQ)] 6 + 6 = 12

Group - E

8.	(a) (b)	Implement the logic function $f = A\overline{B} + \overline{A}B$ using CMOS logic. Realise a two input NAND gate using CMOS logic.	[(CO5)(Apply/IOCQ)] [(CO5)(Apply/IOCQ)] 6 + 6 = 12
9.	Write	e short notes on any three:	(3 × 4) = 12

(i) EPROM

- (ii) **TTL NAND Gate**
- (iii) **CMOS NOR gate**
- **Universal Gates** (iv)
- (v) D Morgans Theorem.

[(CO4)(Apply/IOCQ)]

	-		
Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	14.58	47.92	37.5

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Make use of the concept of Boolean algebra to minimize logic expressions by the algebraic method, K-map method, and Tabular method.
- Construct different Combinational circuits like Adder, Subtractor, Multiplexer, De-Multiplexer, Decoder, Encoder, etc. 2.
- 3. Design various types of Registers and Counters Circuits using Flip-Flops (Synchronous, Asynchronous, Irregular, Cascaded, Ring, Johnson).
- Outline the concept of different types of A/D and D/A conversion techniques. 4.
- Realize basic gates using RTL, DTL, TTL, ECL, and CMOS logic families. 5.
- Relate the concept of Flip flops to analyze different memory systems including RAM, ROM, EPROM, EEROM, etc. 6.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.