B.TECH/ECE/7TH SEM/ECEN 4142/2023

FIBER OPTIC COMMUNICATION (ECEN 4142)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

1.

		Gro	up – A			
Answe	er any twelve:			12 × 1 = 12		
	Cho	ose the correct alt	ernative for the follow	ring		
(i)	Light is guided within the core of a step-index fiber by (a) refraction at the core-air interface (b) total internal reflection at the core-cladding interface (c) total internal reflection at the outer surface of the cladding (d) change in the speed of light within the core.					
(ii)	In a step-index (a) 0.0	fiber, what is the (b) 2.405	cut-off frequency of t (c) 3.832	he LP ₁₁ mode? (d) 5.520.		
(iii)	Which of these converts the electrical signal to optical signals? (a) Optical photo detectors (b) Demultiplexers (c) Multiplexers (d) Optical modulator.					
(iv)	Which of the following pairs are suitable for making a heterojunction? (a) Si and Ge (b) Si and GaAs (c) GaAs and AlAs (d) GaAs and GaAlAs.					
(v)	Which mechan (a) Dispersion (c) Stimulated		er Technology for ger (b) Absorpt (d) Spontar	_		
(vi)	Optical splice provides a connection between (a) transmitter to fiber (b) receiver to fiber (c) fiber to fiber (d) fiber to repeater.					
(vii)	A 1x 10 couple output port? (a) 0dBm	er has an input : (b) -1dBm	signal 0dBm. What i (c) -3dBm	s the power level at each (d) -10dBm.		
(viii)	(a) Mach-Zehn	ollowing tunable fi der interferomete tic tunable filters	• • •			

(ix)	Gain in EDFA depends on the following fa(a) Doping concentration(c) Pump power	(b) Length of the doped fiber (d) All of these.			
(x)	The essential condition for total internal contical fiber is when the incidence angle (a) Critical angle (c) Reflection angle	-			
	Fill in the blanks with the o	correct word			
(xi)	detectors give amplified output.				
(xii)	Dispersion is maximum in type o	f optical fibers.			
(xiii)	Unlike wired media, optical fibers are highly resistant to				
(xiv)	The attenuation caused by Rayleigh scattering is proportional to				
(xv)	Type of fiber that has the highest n	nodal dispersion.			
	Group - B				
(a)	A step-indexed fiber has a core and class respectively and supports an optical sign. & NA for a single mode fiber.	_			
(b)	Define Acceptance angle and Numeric acceptance angle & numerical aperture, h	-			
(c)	Why optical communication is preferre Communication?				
(a)	Differentiate between single mode optica				
(b)	Derive the intermodal dispersion of mult				
(c)	Explain the different causes of attenuatio	(CO1,CO2)(Evaluate/HOCQ) n in optical fiber. $(CO3)(Analyse/IOCQ)$ $4 + 4 + 4 = 12$			
	Group - C				
(a)	Explain with example the direct ban semiconductors? Which of these are more	ore suitable for fabricating LEDs? Give			
(b) What are homojunctions and heterojunctions properties? [(CO3)(Remember/LO3)] (c) Consider a GaAs p-n junction in equilibrium at room temperature (RT = 30) Assume that the acceptor and donor impurity concentrations are 5×10^{23} m ⁻³ 5×10^{21} m ⁻³ , respectively. Calculate the diffusion potential V _{D.} [(CO6)(Evaluation/HO3)]					
	reasons. What are homojunctions and heterojunct Consider a GaAs p-n junction in equilibri Assume that the acceptor and donor imp	[(CO3)(Remember/LOCQ) ions properties? [(CO3)(Remember/LOCQ) ium at room temperature (RT = 300 K) urity concentrations are 5×10^{23} m ⁻³ an			

2.

3.

4.

- 5. (a) Illustrate the principles of fiber optic coupler & Splitters. [(CO4)(Apply/IOCQ)]
 - (b) Write, how to Test the Quality of Fiber Optic Splitter? [(CO4)(Synthesis/HOCQ)]
 - (c) Describe briefly the Characteristics of Light Source of Communication in connection of fiber optics communication. [(CO5)(Knowledge/LOCQ)]

(2+2)+4+4=12

Group - D

- 6. (a) Describe the working principle of avalanche photo detector. [(CO4)(Analyse/IOCQ)]
 - (b) Define responsivity and efficiency of a photo detector. [(CO4)(Remember/LOCQ)]
 - (c) Compare the merits of avalanche photodiode and photo conducting detector in respect of optical communication. [(CO4)(Analyse/IOCQ)]

4 + (2 + 2) + 4 = 12

- 7. (a) Illustrate the basic principle of operation of semiconductor optical amplifier (SOA). [(CO4)(Apply/IOCQ)]
 - (b) Distinguish between the amplification process in an erbium doped fiber amplifier and a fiber Raman amplifier. [(CO4)(Remember/LOCQ)]
 - (c) What is electro optic effect?

[(CO4)(Remember/LOCQ)]

4 + 6 + 2 = 12

Group - E

8. (a) Compare the LAN, MAN & WAN.

[(CO5)(Analyse/IOCQ)]

(b) Discuss with some examples of sociological needs in rural areas, which are best met by ISDN? [(CO5)(Analyse/10CQ)]

6 + 6 = 12

- 9. (a) Discuss with necessary block diagram about Synchronous Optical Network (SONET). [(CO5)(Analyse/IOCQ)]
 - (b) Describe briefly about the high speed Ethernets. [(CO4)(Remember/LOCQ)]
 - (c) State the different type of Network Topologies.

[(CO5)(Remember/LOCQ)]

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	36.46	45.83	17.71

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Apply the basic idea of electronics, physics and solid state devices and explain the operation of different components in an optical communication system.
- 2. Understand the properties of optical fiber and categorize the transmission characteristics of a wave through the optical fiber.
- 3. Analyze the structure of various optical sources and can classify them according to the performance, efficiency and application.
- 4. Explain the operation of optical detectors and can analyze the performance parameters of a detector. 5. Recognize the current optical technologies used for long distance communication and their application in optical networks.
- 6. Solve the problems related to optical fiber communication and can justify the physical significance of the solutions.

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.