B.TECH/CSE/CSE(DS)/5TH SEM/CSEN 3002/2023

FORMAL LANGUAGE & AUTOMATA THEORY (CSEN 3002)

Time Allotted : 2¹/₂ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

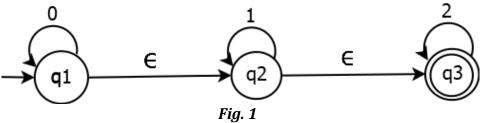
1. Answer any twelve:

Choose the correct alternative for the following

- (i) In a Moore machine, the outputs are associated with: (a) Transitions between the states (b) The input symbols (d) The states themselves. (c) The input and output symbols (ii) Given an alphabet {0, 1}, how many states are required in a DFA to recognize all strings with an odd number of 0's? (b) 3 (c) 4 (d) 5. (a) 2 Match the type of grammar according to Chomsky hierarchy (iii) **Regular Grammar** Type 0 **(I)** (i) Type 1 **Context Free Grammar** (II) (ii) (III) Type 2 (iii) Context Sensitive grammar (IV) Type 3 (iv) Unrestricted Grammar (a) I-iv, II-iii, III-ii, IV-i (b) I-iv, II-i, III-ii, IV-iii (c) I-iv, II-iii, III-i, IV-ii (d) I-iii, II-iv, III-ii, IV-i. (iv)If L_1 and L_2 are two regular languages, then L_1 and L_2 are closed under (a) union (b) concatenation (d) all of these. (c) intersection (v) The regular expression for set of all strings of {0, 1} that contain string ending in 1 and does not contain substring 00 is given by (a) $(10 + 01)^{*1}$ (b) (01 + 11)*1 (c) $(1 + 01)^* + 1$ (d) None of these. (vi) Arden's theorem is used for solving equations in the context of which type of grammars? (a) Regular (b) Context-free (c) Context-sensitive (d) Unrestricted.
- A Turing Machine can recognize which type(s) of languages? (vii) (b) Context-free languages only (a) Regular languages only (d) All of the above. (c) Context-sensitive languages only

Full Marks : 60

 $12 \times 1 = 12$


(viii)	Which type of automata can accept context-sensitive language?(a) Turing machine(b) Linear bounded automata(c) Pushdown automata(d) Deterministic finite automata.			
(ix)	Which regular expression can generate strings over $\{0,1\}$, having substring 01?(a) $(0+1)^*01$ (b) $0^*1^*010^*1^*$ (c) $(0+1)^*01(0+1)^*$ (d) $01(0+1)^*$.			
(x)	Context free languages are not closed under(a) union(b) concatenation(c) intersection(d) none of these.			
Fill in the blanks with the correct word				
(xi)) In a pushdown automaton (PDA), it employs a data structure to determine its next move by considering its current state and the next input symbol.			
(xii)	The number of tuples in Turing machine definition is			
(xiii)	In a finite state machine, the set of states where the machine can terminate and accept the input is known as the states.			
(xiv)	L and \sim L are recursive enumerable, then L is			
(xv)	The language which is accepted by PDA is known as			

Group - B

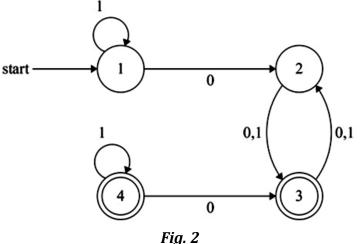
- 2. Provide DFA for the following language over the alphabets $\Sigma = \{0, 1\}$.
 - (i) All strings containing three consecutive 0's.
 - (ii) All strings that do not end with 11.
 - (iii) All strings that begin with 00 and end with 11.
 - (iv) The string containing even number of 0's and odd number of 1's.

[(CSEN3102.6)(Apply/LOCQ)] (3 + 3 + 3 + 3) = 12

3. (a) Design an NFA without \in transitions for the following \in -NFA. Show each step.

^{[(}CO2)(Analyse/IOCQ)]

- (b) Construct a deterministic finite automata over $\Sigma = \{0,1\}$ such that the number of 0's is even and the number of 1's is divisible by 3. [(CO6)(Apply/HOCQ)]
- (c) State the differences between deterministic and non-deterministic finite automata. [(C01)(Evaluate/LOCQ)]


4 + 5 + 3 = 12

Group - C

- 4. (a) Prove that the language L= $\{a^{n^2} | n \ge 1\}$ is not regular. Give justification of your answer. [(CO3)(Analyse/LOCQ)]
 - (b) Construct a deterministic finite state automata over $\Sigma = \{0,1\}$ that accepts a string which is contained in the regular expression R= 01+(0+1)*(00+1).
 - (c) Discuss different types of linear grammars with suitable examples. [(C01)(Remember/LOCQ)]

51 + 5 + 2 = 12

5. (a) Determine the set of strings that are recognized by the given automata over the alphabets $\sum = \{0, 1\}$.

[(CSEN3102.6)(Apply/IOCQ)]

(b) List the closure properties of regular sets for each of the following operations:(i) Union (ii) Concatenation and (iii) Star (Kleene Closure)).

[(CSEN3102.2)(Remember/LOCQ)] 6 + 6 = 12

Group - D

- 6. (a) Design context-free grammars for the following cases over Σ={0,1}:
 (i) L₁ = {w | w is a string of palindromes of odd length}
 (ii) L₂ = {w | w contains at least three 1's}. [(CO6)(Understand/IOCQ)]
 (b) Is the following CFG ambiguous? Justify your answer.
 - (c) $\Sigma = \{a,b\}$. $S \rightarrow AB | aaB, A \rightarrow a | Aa, B \rightarrow b$ [(CO3)(Evaluate/IOCQ)] [(CO3)(Evaluate/IOCQ)][(CO3)(Evaluate/IOCQ)]

(2+2)+3+5=12

7. (a) Convert the following grammar to Chomsky Normal Form (CNF): $S \rightarrow AACD$ $A \rightarrow aAb|\epsilon$ $C \rightarrow aC|a$ $D \rightarrow aDa|bDb|\epsilon$ [(CSEN3102.6)(Apply/IOCQ)]

- (b) What are null productions in a Context-Free Grammar (CFG), and how can they be eliminated? [(CSEN3102.5)(Understand/LOCQ)]
- (c) What are right-most and left-most derivations in a Context-Free Grammar (CFG)? Provide examples to demonstrate each type of derivation.

[(CSEN3102.1)(Apply/LOCQ)]6 + 3 + 3 = 12

Group - E

- 8. (a) Is the "halting problem" of Turing machine solvable or decidable? Justify.
 - (b) Design a Turing machine for the language L which generates strings having equal number of 0's and 1's over $\Sigma = \{0,1\}$. [(C01)(Analyse/IOCQ)]
 - (c) Discuss different types of Turing machines.

4 + 4 + 4 = 12

[(CO2)(Understand/LOCQ)]

9. (a) Describe Post's Correspondence Problem (PCP) and explain with appropriate example whether it is considered an undecidable problem.

[(CSEN3102.2)(Remember/IOCQ)]

(b) Describe how a Universal Turing Machine can simulate the behaviour of any other Turing machine. [(CSEN3102.2)(Understand/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	39.58	50	10.41

Course Outcome (CO):

After the completion of the course students will be able to

- **CSEN3002.1.** Recall the basic characteristics of various types of machines, languages and grammars.
- **CSEN3002.2.** Compare different computational models, languages and grammars based on their properties and behaviors.
- **CSEN3002.3.** Apply formal mathematical methods to prove properties of languages, grammars, and automata.
- **CSEN3002.4.** Apply the knowledge of theory of computation to an engineering application (e.g., designing the compilers).
- **CSEN3002.5.** Classify formal languages and evaluate whether a language/grammar belongs to a given type or not.
- **CSEN3002.6.** Design automata for given languages/grammars. Generate languages/grammars for a given automaton and Construct grammars for languages and vice versa.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.