BIOSENSORS (BIOT 4124)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

1.

Group – A						
Answe	er any twelve:		12 × 1 = 12			
	Choose the correct alternative	for the following				
(i)	Bananatrode is suitable for detection of (a) Alcohol (b) Dopamine	(c) Phenol	(d) Benzene.			
(ii)	In Piezo-electric biosensor, the resonant f (a) $\Delta f = -K^2 f \Delta m / A$ (c) $\Delta f = -K f \Delta m / A^2$	Frequency changes (b) $\Delta f = Kf^2 \Delta m/A$ (d) $\Delta f = -Kf^2 \Delta m/A$	l			
(iii)	Biosensors which measures the light general (a) Amperometric biosensor (c) Optical biosensor	eration is known a (b) Electrochemi (d) Piezoelectric	ical biosensor			
(iv)	Biosensors which measures the mass cha (a) Amperometric biosensor (c) Calorimetric biosensor	nge is known as (b) Electrochemi (d) Piezoelectric				
(v)	The component of a biosensor which bind (a) bio-recognition element (c) signal processor	ls with the analyte (b) transducer (d) reading device				
(vi)	The selection of immobilization process of (a) number of step in the process (c) stability and catalytic specificity	(b) cost	-			
(vii)	The response of an ion-selective electrode (a) $E=E_0 + (RT/zF)ln[i]$ (c) $E_0 = E + (RT/zF)ln[i]$	e is given by (b) E=E ₀ + (zF/R (d) E ₀ =E + (zF/F				
(viii)	In which of the technique enzyme and productional reagent (a) Covalent cross-linking (c) Physical entrapment	polymer are bridg (b) Adsorption (d) Microencaps	-			

	(IX)	(a) DNA (c) Antibody	(b) Enzyme (d) All of (a), (b) & (c).		
	(x)	The genetic monitoring and disease diag (a) DNA sensors (c) Point of care sensors	nosis are examples for sensor? (b) Cell-based sensors (d) All of (a), (b) & (c)		
		Fill in the blanks with the	correct word		
	(xi)	The first widely used commercial biosen	sor is known as		
	(xii)	Chemiluminescent used in an optical bio	sensor is		
	(xiii)	For competitive enzyme immobilization,	Km value		
	(xiv)	One enzyme immobilisation technique which i	is a surface phenomenon is named as		
	(xv)	Biosensor where microbe is used as bio-re	cognition element is called as		
		Group - B			
2.	(a)	How many major components are there in a biosensor? Illustrate on them.			
	(b)	What are the 7s rule of an ideal biosensor? $[(CO2)(Remember/LOCQ)]$ $[(CO1)(Understand/IOCQ)]$ $6 + 6 = 1$			
3.	(a) (b)	What is activation of support matrix examples of this process. Explain the reaction mechanism of comdouble reciprocal plot of competitive inhibited enzyme.	[(CO2)(Analyse/IOCQ)] petitive inhibition of enzyme. Draw the		
		Group - C			
4.	(a)	Explain how DNA can be used as a			
	(b)	Biosensor. Write notes on wearable biosensors.	[(CO3)(Explain/IOCQ)] [(CO5)(Remember/LOCQ)] 6 + 6 = 12		
5.	(a)	Explain how glucose can be detected by	GOD in a Calorimetric Biosensor. [(CO3)(Explain/IOCQ)]		
	(b)	Enumerate with an example the use of m			
		Group - D			
6.	(a)	Describe with an example the working p	rinciple of Piezo-electric Biosensor. [(CO4)(Design/IOCQ)]		

- (b) Discuss the role of carbon nanotubes in Biosensors. [(CO4)(Discuss/IOCQ)] 6+6=12
- 7. (a) Design the process of detecting DNA with the help of Potentiometric biosensor.

Group - E

8. (a) State the principle of nitrate determination in water using biosensor.

[(CO6)(Analyse/IOCQ)]

(b) Explain with an example how esophagus cancer can be detected by biosensor [(CO4)(Apply/HOCQ)]

6+6=12

9. (a) How is biosensor used in fingerprint analysis.

[(CO5)(Analyse/IOCQ)]

(b) Write short note on E-Nose.

[(CO4)(Apply/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	12.50	75.00	12.50

Course Outcome (CO):

After completing this course, students will be able to:

- 1. State types of bio-recognition elements and describe the fundamental components required to make a viable biosensor.
- 2. Illustrate types of enzyme immobilization methods used to make a biosensor and immobilize it to a transducer for the construction of biosensor.
- 3. Describe each types of biosensing element in relation to their uses in biosensors.
- 4. Understand the classification, construction and working principle of various transducers.
- 5. Understand the concepts, types, working principles and practical applications of important biosensors.
- 6. Explain the working principle of different types of inhibition based biosensors.

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.