B.TECH/CHE/5TH SEM/CHEN 3102/2023

CHEMICAL REACTION ENGINEERING - I (CHEN 3102)

Time Allotted : 2¹/₂ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 4 (four) from Group B to E, taking one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

Answer any twelve: 1.

Choose the correct alternative for the following

(i)	 For the reaction SO₂ + ¹/₂ O₂ = SO₃ carrier reaction (a) Is considered as homogeneous (b) Is considered as heterogeneous (c) May be either homogeneous or heterogeneous (d) None of the above. 	d out in presence of Pt-Rh catalyst, the ogeneous
(ii)	Reactions with high activation energy are (a) very temperature sensitive (c) always irreversible	e (b) temperature insensitive (d) always reversible.
(iii)	Higher free energy of activation of a cher implies (a) higher rate of reaction (c) slower rate of reaction	mical reaction (at a given temperature)(b) higher equilibrium conversion(d) none of (a), (b) & (c).
(iv)	With increase in temperature, the eq exothermic reaction (a) increases (c) remains unaffected	uilibrium conversion of a reversible (b) decreases (d) none of (a), (b) & (c).
(v)	There is no correspondence between stor case of a / an reaction. (a) non elementary (c) series	chiometry and the rate equation in (b) elementary (d) parallel
(vi)	Rate constant 'k' and absolute temperatu bimolecular reaction) as (a) $k \propto T^{1.5}$ (c) $k \propto T$	re T are related by Collision theory (for (b) $k \propto T^{0.5}$ (d) $k \propto exp(-E/RT)$

Full Marks: 60

 $12 \times 1 = 12$

- (vii) For a ______ order chemical reaction, the half- life period is independent of the initial concentration of the reactant A.
 (a) first (b) third (c) second (d) zero
- (viii) A space time of 3 hours for a flow reactor means that
 - (a) it takes three hours to dump the entire volume of the reactor with feed,
 - (b) three reactor volumes of feed can be processed every hour
 - (c) the time required to process one reactor volume of feed (measured at specified conditions) is 3 Hours
 - (d) none of the above.
- (ix) The vessel dispersion number for Plug Flow is (a) 0 (b) 500 (c) 750 (d) infinity.
- (x) The single parameter model proposed for describing non ideal flow is
 (a) maximum mixedness model
 (b) segregation model
 (c) dispersion model
 (d) bypassing/dead space model.

Fill in the blanks with the correct word

- (xi) In an autocatalytic reaction one of the _____acts as a catalyst. (Fill in the blank)
- (xii) The use of space time is preferred over the mean residence time in the design of ______ reactor.
- (xiii) All liquid phase reactions are considered as _____ volume reaction.
- (xiv) In RTD the two most used methods of injection of tracers are Pulse Input and _____ input.
- (xv) In RTD the third moment is also taken about the mean and is related to the _____.

Group - B

- 2. (a) Consider the reaction A +B \rightarrow Products, show that, $\ln \frac{M X_A}{M(1 X_A)} = C_{A0}(M 1)kt$ for
 - (b) At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy of this reaction from the Collision theory. [(C01)(Analyze/IOCQ)] 6 + 6 = 12
- 3. (a) An aqueous solution of ethyl acetate is to be saponified with sodium hydroxide. The initial concentration of ethyl acetate is 5.0 g/liter and that of caustic soda is 0.10 normal. Values of the second-order rate constant, in liters/(g mole)(min), are k = 23.5 at 0°C and 92.4 at 20°C. The reaction is essentially irreversible. Estimate the time required to saponify 95% of the ester at 40°C. [(CO1)(Apply(LOCQ))]
 - (b) Find the first order rate constant for the disappearance of A in the gas reaction 2A = R if on holding the pressure constant the volume of the reaction mixture, starting with 80% A decreases by 20% in 3 min. [(CO1)(Analyze(IOCQ))]
 - (c) Deduce the integrated form of a half order reaction.

[(CO1)(Evaluate(HOCQ)) 5 + 5 + 2 = 12

Group - C

4. (a) Deduce the performance equation of an ideal plug flow reactor. [(CO2)(Apply/IOCQ)] (b) The gas leaving an ammonia oxidation plant consists of 10% NO, 1% NO₂, 8% O₂ and rest inert. The gas is allowed to oxidize NO (A) + $1/2O_2$ (B) = NO₂ (R) until NO₂: NO ratio reaches 8:1 and the oxidized gas is then absorbed in water to produce nitrisc acid. Calculate the size of the tubular reactor (assuming plug flow) operating at 20°C and I atm needed to NO to NO₂ oxidation for a gas feed rate of 1000 m³/hr (measured at 0°C and 1 atm). The reaction rate equation is

$$r_{NO_2} = 14000C_{No}^2 C_{O_2} \frac{kmol}{m^3 s}$$

(c) An aqueous reactant stream (4mol A/lit) passes through a mixed flow reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor $C_{A=1}$ mol/lit. The reaction is first order with respect to A and the reactor volumes are equal. [(CO2)(Apply(IOCQ))]

3 + 5 + 4 = 12

[(CO2)(Apply(LOCQ))]

[(CO2)(Apply/HOCQ)]

- 5. (a) Deduce the performance equation of a MFR.
 - (b) We are planning to operate a batch reactor to convert A into R. This is a liquid reaction, the stoichiometry is $A \rightarrow R$, and the rate of reaction is given in the following table. How long must we react each batch for the concentration to drop from $C_A = 1.3 \text{ mol /liter to } C_{Af} = 0.3 \text{ mol / liter}$?

2 0.000										
C _A mol /liter	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3
- r _A , mol / liter. min	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045
								[[CO2)(Eval	uate(HOCQ

5 + 7 = 12

Group - D

6. (a) A and B react with each other as follows:

$$\begin{array}{ll} 2A = R, & r_{R} = k_{1}C_{A}^{2} \\ A + B = S, & r_{S} = k_{2}C_{A}C_{B} \\ 2B = T, & r_{T} = k_{3}C_{B}^{2} \end{array}$$

What ratio of A and B should be maintained in a mixed flow reactor so as to maximize the fractional yield of desired product S? [(CO3)(Evaluate(HOCQ))]

- (b) For the elementary reactions $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ Carried out in a MFR, find the value of $C_{R \max}$. [(CO3)(Evaluate/HOCQ)]
 - 6 + 6 = 12
- 7. Chemical R is to be produced by the decomposition of A in a given mixed reactor. The reaction proceeds as follows:
 - $A \rightarrow R$, $r_R = k_1 C_A$

$$2A \rightarrow S$$
, $r_S = k_2 C_A^2$

Let the molar cost ratio $k_R/k_A = M$ (S is waste material of no value), and for convenience let $k_1 = Nk_2C_{A0}$. In the feed C_{A0} is fixed.

- (i) Ignoring operating costs, find what conversion of A should be maintained in the reactor to maximize the gross earnings and therefore the profits. [(CO3)(Analyze(10CQ))]
- (ii) Repeat part (i) with the hourly operating cost dependent on feed rate and given by $\alpha + \beta F_{A0.}$ [(CO3)(Evaluate(10CQ))]
- (iii) Taking an example of a parallel reaction, define the term instantaneous yield.

[(CO3)(Evaluate/IOCQ)](5 + 5 + 2) = 12

Group - E

8. (a) A sample of the tracer hytane at 320K was injected as a pulse to a reactor, and the effluent concentration was measured as a function of time, as per the data shown in the following table.

t (min)	0 1 2	3 4	5	6	7	8	9	10	12	14	17	20	23
$C(g/m^3)$	0 1 5	8 10	12	11	9	8	6.5	5	3.0	2.2	1.5	0.6	0
		1						C					

Construct figure showing C(t) as functions of time.(b) Construct a figure showing E(t) as functions of time.

[(CO4)(Evaluate(HOCQ))] [(CO4)(Evaluate(HOCQ))]

(c) Determine the fraction of material leaving the reactor that has between 7 and 17 minutes. [(CO4)(Evaluate(HOCQ))]

4 + 4 + 4 = 12

9. (a) Determine the following RTD function for a laminar flow reactor:

$$E(t) = \begin{cases} 0 & t < \frac{\tau}{2} \\ \frac{\tau^2}{2t^3} & t \ge \frac{\tau}{2} \end{cases}$$

[(CO4)(Evaluate/HOCQ)]

(b) Determine mean conversion in a PFR following Segregation model. [(CO5) (Analyze/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	10.42	37.5	52.08

Course Outcome (CO):

After the completion of the course students will be able to:

- 1. Determine rate equation of a chemical reaction from its kinetic experimental data.
- 2. Design a suitable reactor for a given chemical reaction.
- 3. Optimize the size and combination of chemical reactors in view to maximize yield and productivity of a material.
- 4. Compare the performance of ideal and non-ideal reactors using E(t) and F(t) curves.
- 5. Analyse a non-ideal reactor and predict conversion of a given chemical reaction.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.