MATHEMATICS - I (MTH 1101)

Time Allotted : 2½ hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 4 (four)</u> from Group B to E, taking <u>one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

1. Answer any twelve:

 $12 \times 1 = 12$

Full Marks : 60

Choose the correct alternative for the following

(i)	The condition or	t for which the ratio (b) $t \neq \frac{2}{3}$	ank of $A = \begin{bmatrix} 2 & 0 \\ 5 & t \\ 0 & 3 \end{bmatrix}$	1 3 be 3 is		
	(a) $t \neq \frac{3}{2}$	(b) $t \neq \frac{2}{3}$	(c) $t = \frac{2}{3}$	(d) $t = \frac{3}{2}$.		
(ii)	The sequence $\left\{\frac{1}{2}\right\}$	$\left \frac{1}{3^n}\right $ is				
	(a) monotonic in (c) oscillatory	ncreasing	(b) divergent (d) monotonic decreasing.			
(iii)	If 3 is an eigenva (a) A		4, then 0 is an eige (c) <i>A</i> + 3 <i>I</i>	envalue of the matrix (d) $A - I$.		
(iv)	Integrating factor of $\frac{dy}{dx} + y = 1$ is					
	(a) e^{x}	(b) x^2	(C) <i>x</i>	(d) 2.		
(v)	If $f(x, y, z) = 3x^2y - y^3z^2$, then grad f at $(1, -2, -1)$ is (a) $12\hat{\imath} + 9\hat{\jmath} + 16\hat{k}$ (b) $-12\hat{\imath} - 9\hat{\jmath} - 16\hat{k}$ (c) $\hat{\imath} + 9\hat{\jmath} - 16\hat{k}$ (d) $9\hat{\imath} + \hat{\jmath} - 16\hat{k}$.					
(vi)	The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + x \left(\frac{dy}{dx}\right)^5 + y = x^2$ is (a) order 1 degree 5 (b) order 2 degree 5 (c) order 2 degree 3 (d) order 3 degree 5.					
(vii)	If the differential equation $\left(y + \frac{1}{x} + \frac{1}{x^2y}\right) dx + \left(x - \frac{1}{y} + \frac{A}{xy^2}\right) dy = 0$ is exact, the the value of <i>A</i> is					
	(a) <i>x</i>	(b) 1	(c) $\frac{1}{xy}$	(d) $\frac{1}{y}$.		

(viii) The changed order of the integral
$$\int_{0}^{a} \int_{a-\sqrt{a^{2}-y^{2}}}^{a+\sqrt{a^{2}-y^{2}}} dxdy$$
 is
(a) $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^{2}}} dydx$ (b) $\int_{0}^{a} \int_{0}^{\sqrt{2ax-x^{2}}} dydx$
(c) $\int_{0}^{a} \int_{0}^{-\sqrt{2ax-x^{2}}} dydx$ (d) $\int_{0}^{2a} \int_{0}^{-\sqrt{2ax-x^{2}}} dydx$.
(ix) If $x = u + v$ and $y = uv$, then $\frac{\partial(x, y)}{\partial(u, v)}$ is
(a) uv (b) $u - v$ (c) $u + v$ (d) $\frac{u}{v}$.
(x) $f(x, y) = \frac{x^{2}}{y} + \frac{2y^{2}}{x}$ is a homogeneous function of degree
(a) 0 (b) 1 (c) 2 (d) 3
Fill in the blanks with the correct word
(xi) The eigen values of the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 5 \end{bmatrix}$ are _____.
(xiii) The value of the constant p so that $\vec{f} = (x + 3y)\hat{i} + (y - 2z)\hat{j} + (x + pz)\hat{k}$ is solenoidal is _____.
(xiv) The general solution of the differential equation $y - px = \sqrt{p^{2} - 1}$, where $p = \frac{dy}{dx}$ is _____.
(xv) If $f(x, y)$ is a homogeneous function of degree n having 2^{nd} order continuous partial derivatives, then $x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}} =$ ______.

Group - B

2. (a) Reduce the following matrix *A* in row-reduced echelon form and hence find its rank where $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$. *[(MTH1101.1, MTH1101.2)(Understand/LOCQ)]* (b) Determine the value of $\lambda \& \mu$ for which the system of equations

(b) Determine the value of $\lambda \ll \mu$ for which the system of equations x + 2y + 3z = 6 x + 3y + 5z = 9 $2x + 5y + \lambda z = \mu$ will have (i) no solution (ii) a unique solution and (iii) infinitely many solutions. [(MTH1101.1, MTH1101.2) (Apply/IOCQ)] 6 + 6 = 12 3. (a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 4 \end{bmatrix}$. Hence compute

(b) A^{-1} . [(MTH1101.1, MTH1101.2)(Remember/LOCQ)] (b) Determine the eigenvalues and eigenvectors of the following matrix: $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 5 & 1 \end{bmatrix}$. [(MTH1101.1, MTH1101.2)(Evaluate/HOCQ)]

6 + 6 = 12

Group - C

- 4. (a) Show that the sequence $\left\{\frac{2n-1}{3n+2}\right\}$ is monotonic increasing and bounded. Hence prove that it is convergent. [(MTH1101.3, MTH1101.4)(Analyse/IOCQ)]
 - (b) If $r = |\vec{r}|$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, prove that (i) $\vec{\nabla} \left(\frac{1}{r}\right) = -\frac{\vec{r}}{r^3}$ and (ii) $\vec{\nabla} (r^n) = n r^{n-2}\vec{r}$. [(MTH1101.3, MTH1101.4)(Understand/LOCQ)] 6 + 6 = 12
- 5. (a) Test for absolute convergence or conditional convergence of the series: $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3\sqrt{n}}.$ (b) Test the convergence of the series $\frac{6}{1.3.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + ...$ (c) Find the value of curl grad ϕ , where $\phi = x^2 + y^2 + z^2$. [(MTH1101.3, MTH1101.4)(Remember/LOCQ)] (c) Find the value of curl grad ϕ , where $\phi = x^2 + y^2 + z^2$. [(MTH1101.3, MTH1101.4)(Understand/LOCQ)] **6 + 4 + 2 = 12**

Group - D

- 6. (a) Solve: $(2x \log x xy) dy + 2y dx = 0.$ [(MTH1101.5)(Remember/LOCQ)] (b) Solve the following Cauchy-Euler equation: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^2 \log x.$ [(MTH1101.5)(Evaluate/HOCQ)] 6 + 6 = 12
- 7. (a) Solve the following ordinary differential equation: $p - \frac{1}{p} - \frac{x}{y} + \frac{y}{x} = 0.$ [(MTH1101.5)(Understand/LOCQ)] (b) Solve the following ordinary differential equation by the method of variation of parameters: $\frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + 2y = xe^{3x} + sin2x.$ [(MTH1101.5)(Evaluate/HOCQ)]

6 + 6 = 12

Group - E

8. (a) Verify Green's theorem, for $\oint_C \{(3x-8y^2)dx + (4y-6xy)dy\}$ where *C* is the boundary of the region bounded by x = 0, y = 0 and x + y = 1. [(MTH1101.6)(Apply/IOCQ)] (b) If u = f(y - z, z - x, x - y), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. [(MTH1101.6)(Understand/LOCQ)] **6** + **6** = **12** 9. (a) By using Euler's theorem on homogeneous function prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{2} \cot u \left(1 - \frac{1}{2} \operatorname{cosec}^2 u\right)$,

where $u = \cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$. [(MTH1101.6)(Apply/IOCQ)]

(b) Change the order of the integration and hence evaluate $\int_0^1 \int_{e^x}^e \frac{dxdy}{y^2 logy}$.

 $0^{ye^{-y^{2}}} y^{z} \log y$ [(MTH1101.6)(Understand/LOCQ)] 6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	56.25	25	18.75

Course Outcome (CO):

After the completion of the course students will be able to

- MTH1101.1: Apply the concept of rank of matrices to find the solution of a system of linear simultaneous equations.
- MTH1101.2: Develop the concept of eigen values and eigen vectors.
- MTH1101.3: Combine the concepts of gradient, curl, divergence, directional derivatives, line integrals, surface integrals and volume integrals.
- MTH1101.4: Analyze the nature of sequence and infinite series. .
- MTH1101.5: Choose proper method for finding solution of a specific differential equation.
- MTH1101.6: Describe the concept of differentiation and integration for functions of several variables with their applications in vector calculus.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.