M.TECH/CSE/2ND SEM/CSEN 5202/2023

SOFT COMPUTING (CSEN 5202)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A(Multiple Choice Type Questions)

	(Multiple di	olce Type	Questions		
Choos	e the correct alternative for	the followin	ng:		10 × 1 = 10
(i)	A fuzzy set whose member universe whose membership (a) sub normal fuzzy sets (c) convex fuzzy set	-		ızzy set	ment x in the
(ii)	Consider a fuzzy set old as (50,0.6), (60,0.8), (70,1), (80 old will be (a) {(40,0.3)} (c) {(20,0.1),(30,0.2)}),1)}. Then the (b) {50,60,	he alpha-cut fo	or alpha =	0.4 for the set
(iii)	The truth values of crisp set t (a) either 0 or 1, between 0 & (c) between 0 & 1, between 0	λ 1	(b) between	0 & 1, eithe	er 0 or 1
(iv)	Learning principle of Kohone (a) supervised (c) reinforcement	en self-organ	izing network (b) unsuperv (d) none of th	ised	
(v)	The most important operation elitist model (EGA) is (a) Selection (b) Cross		_		_
(vi)	Which of the following functi (a) Bipolar sigmoid function (c) Threshold function	on is differe	ntiable? (b) Unit step (d) Hard limi		
(vii)	Perceptron can learn (a) AND (b) XOR	(c) Both (a	a) and (b)	(d) None	of these.

CSEN 5202 1

1.

M.TECH/CSE/2ND SEM/CSEN 5202/2023

- A 4-input neuron has weights 1, 1, 2 and 2. The transfer function is linear with (viii) the constant of proportionality being equal to 1. The inputs are 4, 4, 5 and 5 respectively. The output will be:
 - (a) 51
- (b) 76
- (c) 28
- (d) 52.
- Back propagation is a learning technique that adjusts weights in the neural (ix) network by propagating weight changes
 - (a) forward from source to sink
- (b) backward from sink to source
- (c) forward from source to hidden nodes (d) backward from sink to hidden nodes.
- (x) Genetic Algorithm are a part of
 - (a) Evolutionary Computing
 - (b) inspired by Darwin's theory about evolution "survival of the fittest"
 - (c) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics
 - (d) All of the above.

Group-B

Consider $\tilde{A}(x)$ and $\tilde{B}(x)$ are two fuzzy set define below: 2. (a)

$$\tilde{A}(x) = \{(x_1, 0.3), (x_2, 0.4), (x_3, 0.1), (x_4, 0.5)\}$$

$$\tilde{B}(x) = \{(x_1, 0.2), (x_2, 0.8), (x_3, 0.7), (x_4, 0.3)\}\$$

Find out following fuzzy sets.

(i) $\tilde{A}(x) \cup \tilde{B}(x)$ (ii) $\tilde{A}(x) \cap \tilde{B}(x)$

[(CO2)(Remember/LOCQ)]

Consider a set $P = \{P1, P2, P3, P4\}$ of four varieties of paddy plants, set $D = \{D1, P2, P3, P4\}$ (b) D2, D3, D4} of the various diseases affecting the plants and S = {S1, S2, S3, S4} be the common symptoms of the diseases. Let R be a relation on P x D and S be a relation on D x S.

		D1	D2	D3	D4
	P1	0.0	0.5	0.2	8.0
	P2	0.3	0.1	0.3	0.2
R	Р3	0.5	0.0	0.4	0.4
	P4	8.0	0.9	0.5	1.0

		S1	S2	S3	S4
	D1	1.0	0.9	0.3	0.5
	D2	0.9	0.8	1.0	8.0
S	D3	0.2	0.1	0.5	1.0
	D4	8.0	1.0	0.6	1.0

Obtain the association of the plants with the different symptoms of the diseases using max-min composition. [(CO2)(Understand/IOCQ)]

Consider \tilde{A} and \tilde{B} are two fuzzy set defined as follows: (c)

 $\tilde{A} = \{(a, 0), (b, 0.5), (c, 1)\}\$

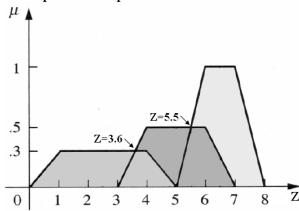
 $\tilde{B} = \{(1,1), (2,0.3), (3,0.8)\}$

Find out the fuzzy implication $\tilde{A} \to \tilde{B}$.

[(CO2)(Understand/LOCQ)]

4 + 6 + 2 = 12

Plot the following membership function $\mu_{\tilde{A}}(x)$ for fuzzy set \tilde{A} and find singleton, 3. (a) core, cross-over points and support for the same. Why this fuzzy set \tilde{A} is said to be normal?


M.TECH/CSE/2ND SEM/CSEN 5202/2023

$$\mu_{\tilde{A}}(x) = \begin{cases} = 0 & \text{if } x \le a \\ = (x - a) / (b - a) & \text{if } a \le x \le b \\ = (c - x) / (c - b) & \text{if } b \le x \le c \\ = 0 & \text{if } c \le x \end{cases}$$

Where a = 2, b = 4 and c = 6.

[(CO2)(Understand/LOCQ)]

(b) The results of three implication processes are shown below:

Find the defuzzyfied output using the following methods:

- (i) Center of Sum (COS)
- (ii) Center of Gravity (COG).

[(CO1)(Apply/IOCQ)]

5 + (3 + 4) = 12

Group - C

- 4. (a) Briefly explain the convolution, pooling and fully connected layers in a convolutional neural network. [(CO5)(Remember/LOCQ)]
 - (b) An input of volume $48 \times 48 \times 3$ is fed to a Convolutional Neural Network. What would be the output volume when you apply?
 - (i) Four $5 \times 5 \times 3$ filters with stride 1 without padding.
 - (ii) Three $5 \times 5 \times 3$ filters with stride 2 and a zero (0) padding of size 1.

What is the difference between Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)? [(CO5)(Analyze/HOCQ)]

6 + 6 = 12

5. (a) Explain training mechanism in a single layered artificial neural network (perceptron) for multi-class data sets using back propagation technique.

[(CO6)(Understand/LOCQ)]

- (b) Explain the main reasons why a Back-Propagation training algorithm might not find a set of weights which minimizes the training error for a given feed-forward neural network. [(CO5)(Analyze/HOCQ)]
- (c) Explain the purpose of the momentum term that is often included in the Back-Propagation learning algorithm. [(CO5)(Understand/IOCQ)]

6 + 3 + 3 = 12

Group - D

6. (a) Explain with example the Roulette-wheel selection algorithm. Write the limitations of Roulette-wheel selection algorithm, if any. [(CO3)(Design/IOCQ)]

CSEN 5202 3

M.TECH/CSE/2ND SEM/CSEN 5202/2023

- (b) Suppose you are using Binary Coded Genetic Algorithm (BCGA) to solve $Min\ f(x) = x^2 2x + 5$; $-2 \le x \le 2$.
 - (i) Define an appropriate fitness function in solving the problem.
 - (ii) In the process, you got two strings 1000100001 and 0010010010 of length 10 in the population. Find the fitness values of the strings according to the fitness function you defined. [(CO4)(Apply/LOCQ)]

6 + (2 + 4) = 12

- 7. (a) Write the Real Coded Genetic Algorithm (RCGA) and explain, with examples, the genetic operators in RCGA. [(CO3)(Understand/LOCQ)]
 - (b) Explain briefly the Multi-Objective Optimization Problem (MOOP). Define, with example, non-dominated solutions of a MOOP. [(CO4)(Apply/IOCQ)]

6 + 6 = 12

Group - E

8. Briefly discuss any three of the followings:

 $(3\times4)=12$

- (i) Momentum in Neural Network
- (ii) Hebbian Learning Model
- (iii) Deep Learning Neural Network
- (iv) Competitive Learning Model.

[(CO3,CO4,CO5)(Remember/LOCQ)]

- 9. (a) What is ANFIS? What are the two options available for FIS training using ANFIS parameter optimization method? [(CO6)(Evaluate/HOCQ)]
 - (b) Write Fuzzy C–Means Algorithm and explain it with an application.

[(CO2)(Understand/LOCQ)]

(4+2)+6=12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	55	29	16

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Learn (remember) and understand soft computing techniques and their roles in building intelligent machines.
- 2. Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.
- 3. Design (create) methodology to solve optimization problems using genetic algorithms.
- 4. Analyze and evaluate solutions by various soft computing approaches for a given problem.
- 5. Understand various models of artificial neural networks and their applications in solving pattern recognition and machine learning problems.
- 6. Develop intelligent systems leveraging the paradigm of soft computing techniques.

CSEN 5202 4

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.