ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT AND SCALE UP (BIOT 5202)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Symbols are of usual significance Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:

		6
(i)	Perfusion reactor is used for the production (a) antibiotics (c) monoclonal antibodies	on of (b) alcohol (d) single cell protein.
(ii)	The scale-up criterion for a CSTR to be us (a) geometric similarity (b) equal P/V ratio (c) equal tip velocity (d) equal impeller based Reynolds Number	
(iii)	Antibiotics are best produced in the react (a) packed bed (c) CSTR	or type (b) bubble column (d) Air lift.
(iv)	Monoclonal antibodies are best produced (a) CSTR without baffles (c) bubble column	in a reactor of the type (b) air-lift fermenter (d) hollow fiber reactor.
(v)	Low flow rate of a gas is measured by (a) rotameter (c) wet gas meter	(b) orificemeter (d) thermo-anemometer.
(vi)	Trickel bed reactor is characterized by (a) mass transfer (c) combination (a) & (b)	(b) low L/D ratio (d) small flow rate of liquid.
(vii)	Cell suspension is a non-Newtonian fluid ((a) bingham plastic (c) dilatants	of the type (b) pseudo plastic (d) none of (a), (b) & (c).

1

Full Marks : 70

 $10 \times 1 = 10$

M.TECH/BT/2ND SEM/BIOT 5202/2023

- Power number (P_{no}) varies with Re_I (impeller Reynolds number) (viii) For turbulent flow regime
 - (a) P_{no} varies with Re_I inversely
- (b) varies directly
- (c) P_{no} varies with Re_I asymptotically
- (d) N_{no} becomes independent of Re_{I} .
- The design parameter of a Monod's chemostat model is (ix) (a) residence time (b) dilution factor (c) specific growth rate (d) space time.
- (x) In case of competitive type of inhibition
 - (a) V_{max} is directly proportional to inhibitor concentration
 - (b) V_{max} is inversely proportional to inhibitor concentration
 - (c) V_{max} is unaffected by inhibitor concentration
 - (d) V_{max} is asymptotically related to inhibitor concentration.

Group - B

- 2. A stirred tank reactor is to be scaled down from 10m³ to 0.1m³. The dimensions (a) of the large tank are:D_t=2m, D_i= 0.5m. N=100rpm.
 - (i) Determine the dimensions of the small tank by using geometric similarity.
 - (ii) What would be the required rotational speed of the impeller in the small tank if the following criteria were used?
 - Constant tip speed
 - Constant impeller Re number.

[(CO3)(Analyze/IOCQ)]

E.Coli have a maximum respiration rate, q_{o2max} , 240mg O_2/gX .h. It is desired to (b) achieve a cell mass of 20gX/L. The k_La is 120h⁻¹ in a 1000L reactor. A gas stream enriched in oxygen is used which gives a value of $C^*= 28 \text{mg/L}$. If oxygen becomes limiting, growth and respiration slow; for example,

 $q_{02} = \frac{q_0 2 \max CL}{\frac{0.2mg}{1+CL}}$, where C_L is the dissolved oxygen concentration in the fermenter.

What is C_L when the cell mass is at 20g/L?

[(CO2)(Compute/IOCQ)] 6 + 6 = 12

3. In the presence of a homogeneous catalyst of a given concentration, aqueous reactant A is converted to product at the following rates, and C_A alone determines this rate:

C _A , (mol/L)	1	2	4	6	7	9	12
-r _A , (mol/L.h)	0.06	0.1	0.25	1	2	1	0.5

We plan to run this reaction in a batch reactor at the same catalyst concentration as used in getting the above data. Find the time needed to lower the concentration of A from $C_{A0} = 10 \text{ mol/L}$ to $C_{A f} = 2 \text{ mol/L}$. [(CO2)(Calculate, Analyse/IOCQ)] 12

Group - C

Find the first order rte constant for the decomposition of A in the gas reaction 4. (a) $2A \rightarrow R$ If, on holding the pressure constant, the volume of the reaction mixture, starting with 80 % A, decreases by 20% in 3 min. [(CO4)(Remember/LOCQ)]

M.TECH/BT/2ND SEM/BIOT 5202/2023

(b) Enzyme E catalyzes the transformation of reactant A to product R as follows: $A \rightarrow R, -r_A = [200 C_A C_{E0}] / [2 + C_A] mol/lit min$

If we introduce enzyme ($C_{E0} = 0.001 \text{ mol/lit.}$) and reactant ($C_{A0} = 10 \text{ mol/lit.}$) into a Batch reactor and let the reaction proceed, find the time needed for the concentration of reactant to drop to 0.025 mol/lit. [(CO4)(Remember/LOCQ)] 6 + 6 = 12

5. (a) At room temperature sucrose is hydrolysed by the catalytic action of the enzyme as Follows

Sucrose \rightarrow products Starting with a sucrose concentration $C_{A0} = 1.0$ mol/lit and an enzyme concentration $C_{E0} = 0.01$ mol/lit, the following kinetic data are obtained in a batch reactor.

C _A (mol/lit.)	0.84	0.68	0.53	0.38	0.27	0.16	0.09	0.04	0.018
t(hr)	1	2	3	4	5	6	7	8	9

Determine whether these data can be reasonably fitted by the kinetic equation given below

 $-r_{A} = [K_{3} C_{A} C_{E0}] / [C_{A} + C_{M}]$

If the fit is reasonable, evaluate the constant K_3 and $C_{\ensuremath{\mathsf{M}}}$.

 $[(CO4)(Understand/HOCQ)] \\ 6+6=12$

Group – D

6. (a) Explain different methods of scale-up. [(CO3)(Remember/IOCQ)]
(b) It is desire to scale-up a batch crystallization of an antibiotic based on experiments with a One liter crystallizer. The use of a 3 cm diameter impeller at a speed of 800 rpm led to good crystallization results. For maintain power per volume constant upon scale-up to 300 liters , what should be the speed of the large-scale impeller ? The solvent has the same density and viscosity as water. [(CO3)(Understand/HOCQ)]

4 + 8 = 12

- 7. (a) What are the main considerations for animal cell culture reactors ?
 - [(CO1)(Remember/LOCQ)]

[(CO5)(Remember/LOCQ)]

(b) Discuss merits and demerits of immobilization both for cells and enzymes. [(CO5)(Understand/LOCQ)]

6 + 6 = 12

Group – E

- 8. Write notes on
 - (i) What is solid state fermentation (S S F).
 - (ii) Explain different types of products obtained from S S F. [(CO5)(Understand/LOCQ)]

BIOT 5202

M.TECH/BT/2ND SEM/BIOT 5202/2023

(iii) Discuss different drawback of S S F.

[(CO5)(Analyse/IOCQ)](4 + 4 + 4) = 12

- 9. (a) What do you understand by the term "Bioreactor"? [(CO1)(Remember/LOCQ)]
 - (b) Discuss the basic instrumentation required for a fermenter (bioreactor).

[(CO6)(Understand/LOCQ)] 2 + 10 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	45.8	29.1	25.1

Course Outcome (CO):

After completing this course, students should be able to:

- 1. Develop basic concept of reaction engineering including microbial growth kinetics.
- 2. Determine mass transfer coefficient.
- 3. Cultivate knowledge about different reactor operations and scale up and scale down.
- 4. Interpret batch reactor data with reference to basic reactor design for a single reaction in an ideal reactor.
- 5. Develop understanding about different advanced bioreactors.
- 6. Be familiar with the bioreactor instrumentation for monitoring and control of bioprocesses.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.