ELECTRONIC DEVICES (ECEN 2204)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	se the correct alte	10 × 1 = 10					
	(i)	Piezoelectricity is (a) Silicon	exhibited by (b) Germaniun	n	(c) GaAs	(d) Quartz.		
	(ii)	The relation of der (a) linear (c) parabolic	electron is onal					
	(iii)	Which one of the operation?	following dev	rices do	oes not require any	v external biasing for		
	(iv) The threshold inversion point of the <i>MOS</i> capacitor is defined when the potential (φ_s) satisfies							
		(a) $\phi_s = \frac{\phi_{fp}}{2}$	(b) $\phi_s = 2$	$2\phi_{fp}$	$(C) \phi_s = \phi_{fp}^2$	(d) $\phi_s = \sqrt{\phi_{fp}}$		
	(v)	Which one of th frequencies?	e following c	levices	can be used to	generate microwave		
	(vi)	At room temperature the intrinsic semiconductor behaves as(a) Metal(b) Semiconductor(c) Insulator(d) Superconductor						
	(vii)	The Early effect in a Bipolar Junction Transistor caused by (a) fast turn-on of the device (b) fast turn-off of the device (c) increase in collector-base reverse bias (d) increase in emitter-base forward bias.						
	(viii)	With rise in tempe (a) increases linea (c) decreases linea	y y.					
ECE	N 2204		1					

B.TECH/ECE/4TH SEM/ECEN 2204/2023

- (ix) The threshold voltage of an n-channel enhancement type MOSFET is 2 V. When the device is biased at a gate voltage of 5 V, pinch-off would occur at drain voltage of
 - (a) 2 V (b) 2.5 V (c) 3 V (d) 3.5 V
- (x) The channel length modulation effect of MOSFET is observed in
 (a) linear mode
 (b) saturation mode
 (c) cut-off mode
 (d) both linear and saturation modes.

Group - B

- 2. (a) Briefly discuss the effect of doping and temperature on the shift of Fermi energy level in semiconductor. [(CO2)(Understand/LOCQ)]
 - (b) Derive the expression of drift current density in a semiconductor sample.

[(CO1)(Analyze/IOCQ)]

(c) The electron concentration in an *n*-type GaAs semiconductor maintained at T = 300 K varies linearly from 1×10^8 to $8 \times 10^{17} \text{ cm}^{-3}$ over a distance of 0.12 cm. The electron diffusion coefficient for the material is $D_n = 225 \text{ cm}^2/\text{sec.}$ Determine the diffusion current density. [(CO1)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

- 3. (a) Evaluate the electron concentration in conduction band of semiconductor under equilibrium. [(C01)(Evaluate/HOCQ)]
 - (b) Find out the position of Fermi energy level in an intrinsic semiconductor under equilibrium. [(CO2)(Apply/IOCQ)]
 - (c) The electron concentration in a sample of uniformly doped n-type Silicon at 300 K varies linearly from 10^{17} /cm³ at x = 0 to 6 × 10^{16} /cm³ at x = 2 µm. Assume a situation that electrons are supplied to keep this concentration gradient constant with time. If electronic charge is 1.6×10^{-19} Coulomb and the diffusion constant D_n=35 cm²/s, find the current density in the Silicon considering no electric field present. [(CO1)(Apply/IOCQ)]

4 + 4 + 4 = 12

Group – C

- 4. (a) Find out the built–in potential V_{bi} expression for a simple p-n junction using energy band diagram. [(CO5)(Apply/IOCQ)]
 - (b) Construct a Ohmic contact using n-type Si and a metal and draw the proper energy band diagram for the same. [(CO6)(Create/HOCQ)]
 - (c) An n-p-n transistor at room temperature has its emitter open circuited. A voltage of 5 V is applied between collector and base with collector positive and a current of 0.2 μ A flows. When the base is open circuited and the same voltage is applied between collector and emitter, the current is found to be 20 μ A. Find α , I_E and I_B, when collector current is 1 mA. [(CO4)(Apply/IOCQ)]

5 + 4 + 3 = 12

B.TECH/ECE/4TH SEM/ECEN 2204/2023

5. (a) Explain the principle of operation of the *p*-*n* junction solar cell.

[(CO4)(Understand/LOCQ)]

(b) An *n*-*p* heterojunction is formed between *GaAs* and *Ge*. Draw the corresponding energy band diagram and show the conduction and valence band offsets $(\Delta E_c \text{ and } \Delta E_V)$ with proper values. Assume, E_g (*GaAs*) = 1.45eV, E_g (*Ge*) = 0.7eV, χ_{GaAs} = 4.07eV and χ_{Ge} = 4.13eV. Here, E_g and χ denote energy bandgap and electron affinity respectively.

[(CO6)(Evaluate/HOCQ)]

(c) Under the application of a bias, in a typical *p*-*n* junction structure, the hole current contribution is around 40% of the total current. As a designer, what will you do to increase this hole current contribution to 80%. Keeping in mind the Diode equation, suggest two possible approaches. [(CO4)(Apply/IOCQ)] 4 + 5 + 3 = 12

Group - D

- 6. (a) Explain the minority carrier concentration profile in the BJT with suitable diagram. [(CO4)(Understand/LOCQ)]
 - (b) Describe all the current components in *n-p-n BJT* with proper diagram.
 - [(CO4)(Understand/LOCQ)] (c) A *BJT* has $\alpha = 0.99$, $i_B = I_B = 25 \ \mu A$, and $I_{CBO} = 200 \ nA$. Evaluate the *dc* collector current, *dc* emitter current, the percentage error in emitter current when leakage current is neglected. All the notations have their usual significance.

[(CO4)(Apply/IOCQ)] 4 + 3 + 5 = 12

- 7. (a) Derive the expressions of I_E , I_C , and I_B from the Ebers-Moll model of the *BJT* when operating in the forward active mode. Draw the corresponding energy band diagram. The notations have their usual significance. [(CO5)(Analyze/IOCQ)]
 - (b) Consider the circuit of *Fig.1*. The transistor has $V_{BE} = 0.75 V$, $V_{CE(sat)} = 0.2 V$, $\beta = 100$. Evaluate I_B , I_C , I_E and V_0 . Determine the region of operation and draw the corresponding energy band diagram. Also, draw the load line for the given bias condition and label the *Q*-point. [(CO5)(Evaluate/HOCQ)]

Fig.1

B.TECH/ECE/4TH SEM/ECEN 2204/2023

Group - E

8. (a) Create inversion layer in a MOS structure with p-type substrate and explain it using proper energy band diagram. [(CO4)(Create/HOCQ)]
(b) Design a small signal equivalent model of an n-channel MOSFET and simplify it for low frequency cases. [(CO4)(Create/HOCQ)]
(c) How does the channel length modulation affect the V-I relation of MOSFET?

4 + 5 + 3 = 12

9. (a) Explain the principle of operation of *CMOS* inverter.

[(CO4)(Understand/LOCQ)]

- (b) Derive the expression of metal-Semiconductor work-function difference (φ_{ms}) of the MOSFET with the help of energy band diagram. [(CO6)(Analyse/IOCQ)]
- (c) Consider the *aluminium silicon Dioxide Silicon, MOS* systems at T = 300 K. Assume, $\varphi_m' = 3.20 \text{ V}$, $\chi' = 3.25$, and $E_g = 1.11 \text{ eV}$. Suppose *p*-type doping concentration is $N_a = 10^{15} \text{ cm}^{-3}$. Calculate the work-function difference for the system. Consider, $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$. [(CO6)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	19.79	44.79	35.42

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Apply the previous knowledge of basic electronics engineering to appreciate the contents of this paper.
- 2. Understand both the particle and wave natures of electrons in Solid State Devices.
- 3. Identify unknown extrinsic semiconductor type using Hall Effect.
- 4. Describe working principles of different devices using mathematical models and energy band diagrams.
- 5. Justify different operations of solid-state devices using relative position of Fermi energy levels across p-njunctions in devices.
- 6. Evaluate performance of different hetero junctions in semiconductor devices.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.

^{[(}CO2)(Analyze/IOCQ)]