DIGITAL SYSTEMS DESIGN (ECEN 2202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choo	se the correct al		10 × 1 = 10				
	(i)	Which of the foll (a) A + 1 = A	owing boolean ex (b) A + A' = 1	-			= 0.	
	(ii)						as (d) 00101011.	
	(iii)	The code where single bit is (a) Alphanumeri		mbers d BCD		their pred xcess 3	ceding number by (d) Gray.	
	(iv)	When both set an (a) Set	nd reset are disab (b) Reset		R flip flop t change		utput will be I) Indeterminate.	
	(v)		hnson counter re (b) 5 flip-flops	•			l) 12 flip-flops.	
	(vi)	Gray code of (11 (a) 101111	0101)2 is (b) 100110	(c) 11	1010	(d) 101011.	
	(vii)	Race around condition is avoided u (a) J-K flip flop (c) Look ahead carry generator			ing (b) Faster gates (d) Edge triggered flip flop.			
	(viii)	An n-stage ripple (a) 2 ⁿ	e counter can cour (b) 2 ⁿ -1	nt up to (c) n		(d	l) 2 ⁽ⁿ⁻¹⁾ .	
	(ix) The fastest ADC is(a) counter-type(c) successive-approximation type				(b) flash-type (d) dual-slope type.			
	(x)	What will be the (a) 1	output from a D f (b) 0				nd D = 0? de between 0 and 1.	

B.TECH/ECE/4TH SEM/ECEN 2202/2023

Group - B

- 2. (a) Simplify the Boolean function by using K-map: F = ∏M(2, 8, 9, 10, 11, 12, 14) and implement the real minimal expression in universal logic. [(CO1)(Evaluate/HOCQ)]
 (b) Expand A' + B' to minterms and maxterms. [(CO1)(Apply/IOCQ)] 8 + 4 = 12
- 3. (a) Simplify the given Boolean expression using Quine-McCluskey procedure $f(A,B,C,D) = \sum m(0,1,3,6,9,10,11,12,14,15)$. [(CO1)(Understand/HOCQ)]
 - (b) Design a 2 bit magnitude comparator circuit using basic gates. [(CO2)(Analyse/IOCQ)]

6 + 6 = 12

Group - C

4. (a) Design and implement a Full Adder circuit using two Half Adders.

[(CO2)(Analyze/IOCQ)]

- (b) What are ROM and RAM? What are the basic differences between EPROM and EEROM? [(CO6)(Remember, Analyze/LOCQ)]
- (c) With the help of a logic diagram and a truth table, explain an Octal to Binary encoder. [(CO2)(Apply/IOCQ)]

4 + (2 + 2) + 4 = 12

- 5. (a) Implement the following function using 8:1 MUX: $F(A, B, C, D)=\sum m(1, 3, 4, 11, 12, 13, 14, 15)$
 - (b)Realize a Full Adder Circuit using 3 to 8 Decoder.[(CO2)(Evaluate/HOCQ)](b)(CO2)(Analyze/IOCQ)](c)(CO2)(Analyze/IOCQ)(c)(CO2)(Analyze/IOCQ)(c)(CO2)(Analyze/IOCQ)(c)(CO2)(Analyze/IOCQ)(c)(CO2)(Analyze/IOCQ)(c)(CO2)(Analyze/IOCQ)

Group - D

- 6. (a) Draw the gate level circuit diagram of a positive edge-triggered JK flip-flop and explain its operation with the help of a truth table. How the race around condition eliminated? [(CO3)(Remember/LOCQ)]
 - (b) What is a shift register? Distinguish between a shift register and a counter.

[(CO3)(Remember/LOCQ)]

(c) Design a 4-bit ring counter using J-K flip-flops.

[(CO3)(Create/HOCQ)](5 + 2) + (1 + 2) + 2 = 12

7. (a) A clocked sequential circuit has four states A, B, C and D as show in the state diagram of Fig.1. Assume state assignments as A = 00, B = 01, C = 10 and D = 11. Prepare the state table and draw circuit using D flip-flops.

[(CO3)(Understand/HOCQ)]

B.TECH/ECE/4TH SEM/ECEN 2202/2023

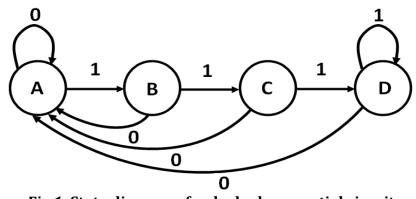


Fig.1: State diagram of a clocked sequential circuit

(b) Design a synchronous MOD 3 UP Counter using J-K flip-flops.

[(CO3)(Analyze/IOCQ)] 6 + 6 = 12

Group - E

8.	(a)	Explain the operation of Flash type Analog to	Digital converter with appropriate		
		circuit diagram.	[(CO4)(Remember/LOCQ)]		

(b) Draw and explain the circuit of R-2R ladder type Digital to Analog converter. [(CO4)(Remember/LOCQ)]

6 + 6 = 12

- 9. (a) With the help of necessary circuit diagram, explain the operation of dual slope type ADC. [(CO4)(Remember/LOCQ)]
 - (b) What are the advantages and disadvantages of the Flash type A/D converter? [(CO4)(Understand/LOCO)]

(c) Design a 2-input NAND gate using CMOS inverter. [(CO5)(Analyze/IOCQ)]

6 + 2 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	35.42	35.42	29.17

Course Outcome (CO):

- 1. Make use of the concept of Boolean algebra to minimize logic expressions by the algebraic method, Kmap method, and Tabular method.
- 2. Construct different Combinational circuits like Adder, Subtractor, Multiplexer, De-Multiplexer, Decoder, Encoder, etc.
- 3. Design various types of Registers and Counters Circuits using Flip-Flops (Synchronous, Asynchronous, Irregular, Cascaded, Ring, Johnson).

B.TECH/ECE/4TH SEM/ECEN 2202/2023

- 4. Outline the concept of different types of A/D and D/A conversion techniques.
- 5. Realize basic gates using RTL, DTL, TTL, ECL, and CMOS logic families.
- 6. Relate the concept of Flip flops to analyze different memory systems including RAM, ROM, EPROM, EEROM, etc.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.