ADVANCED NUMERICAL METHODS (MATH 2202)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	se the correct alternat	$10 \times 1 = 10$		
(i)	The singular values o (a) $\sqrt{2}$, $2\sqrt{2}$	f the matrix $\begin{pmatrix} 0\\ \sqrt{2}\\ 0\\ (b)1, 0 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 1 \\ 2 & 0 \\ 1 & 1 \end{array} $ are $ \begin{array}{c} (c)\sqrt{2}, 1 \end{array} $	(d) 2, 2√2.
(ii)	The value of $ A $, where (a) 9	$en A = \begin{bmatrix} 1 & -1 \\ -6 & 8 \\ 2 & 4 \\ (b) 15 \end{bmatrix}$	$\begin{bmatrix} 7 \\ -3 \\ 2 \end{bmatrix}$ is (c) 17	(d) 8.
(iii)	Geometrically Simps represents a (a) parabola (b)	on's one third straight line	rule for three (c) circle	points of interpolation (d) cubic polynomial.
(iv)	By Lagrange's interp	olation method, t x: 1 3 f(x): 4 12	he value of <i>f</i> (0) 4 19	for the following data
	is (a) 7 (b)	3 (c) —3	(d) 2.
(v)	In Gauss-Jordan method, the given system of linear equations represented by $AX = B$ is converted to another system $PX = Q$ where P is (a) diagonal matrix (b) identity matrix (c) upper triangular matrix (d) lower triangular matrix.			
(vi)	$\Delta e^x =$ (a) $e^{x+h} - e$ (b)	$e^x - e^{x-h}$ (c)	$e^{x} - e^{x+h}$	(d) $e^x(e^h - 1)$
(vii)	Which one of the follo (a) $\Delta \equiv E - 1$ (c) $\Delta a b^x = a b^x (b + 2)$	wing statements	is false? (b) $\nabla \equiv 1 - E$ (d) $\Delta \left(\frac{1}{x}\right) = -$	$\frac{E^{-1}}{\frac{h}{x(x+h)}}$

Full Marks: 70

 $10 \times 1 - 10$

(viii)
$$[x, x_0, x_1] =$$
?
(a) $\frac{[x, x_0] - [x_0, x_1]}{x - x_1}$ (b) $\frac{[x, x_0] - [x_0, x_1]}{x_1 - x}$ (c) $\frac{[x_0, x_1] + [x, x_0]}{x + x_1}$ (d) $\frac{[x, x_1] - [x, x_0]}{x_1 - x_0}$
(ix) Suppose we need to calculate the eigenvalues of $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & 7 \\ 2 & 7 & 5 \end{pmatrix}$, but due to some errors in calculation of the entries of A , we work with $\hat{A} = \begin{pmatrix} 1.01 & -1.05 & 2.1 \\ -1.05 & 1.97 & 7.1 \\ 2.1 & 7.1 & 4.9 \end{pmatrix}$. The maximum difference in the calculated eigenvalues of \hat{A} is (a) 0.12435 (b) 0.23664 (c) 0.36432 (d) 0.14871

(x) The reduction ratio in Dichotomous Search algorithm, if we go through r iterations is (a) $2^{r/2}$ (b) $2^{r/3}$ (c) 2^{r^2} (d) 2^r .

Group - B

- 2. (a) Solve the given system, using Gauss elimination method with partial pivoting 2x + 10y + z = 13 10x + y + z = 12 [(MATH2202.1, MATH2202.4, MATH2202.6)(Evaluate/HOCQ)] x + y + 3z = 5
 - (b) What is condition number of a matrix? Find the condition number of the system of linear equations AX = B, where $A = \begin{bmatrix} 2 & 1 \\ 2.01 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 2.05 \end{bmatrix}$, using the infinite norm. Is the above system ill-conditioned? Justify your answer. [(MATH2202.1, MATH2202.4, MATH2202.6)(Analyze/IOCQ)]

$$6 + 6 = 12$$

- 3. (a) Solve the following system of equations by Cholesky's Decomposition method.
 x + 2y + 3z = 20
 2x + 8y + 22z = 15
 3x + 22y + 82z = 5
 [(MATH2202.1, MATH2202.4, MATH2202.6)(Apply/IOCQ)]
 (b) Find the inverse of the following matrix, using Gauss-Jordan method.
 - $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}$ [(MATH2202.1, MATH2202.4, MATH2202.6)(Remember/LOCQ)] 6 + 6 = 12

Group - C

4. (a) Find the QR factorization of $A = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{pmatrix}$. [(MATH2202.3, MATH2202.4, MATH2202.6)(Understand/LOCQ)]

(b) Compute three iterations of power method to approximate the dominant eigenvector of $A = \begin{pmatrix} -7 & 2 \\ 8 & -1 \end{pmatrix}$, taking the initial approximation $X_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Also find the corresponding eigenvalue using Rayleigh quotient. [(MATH2202.3, MATH2202.4, MATH2202.6)(Evaluate/HOCQ)]

5 + 7 = 12

5. Find the singular value decomposition of the matrix $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. [(MATH2202.3, MATH2202.4, MATH2202.6)(Apply/IOCQ)]

Group - D

6. (a) Obtain the cubic spline approximation for the function in [0, 1] defined by the data:

[(MATH2202.2, MATH2202.6)(Evaluate/HOCQ)]

(b) Find f(x) as a polynimial in x with the following table using Newton's divided difference formula:

X	-1	0	1	2	3	4
f(x)	-16	-7	-4	-1	8	29

[(MATH2202.2, MATH2202.6)(Apply/IOCQ)] 6 + 6 = 12

7. (a) A solid of revolution is formed by rotating about the x - axis, the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates:

x:	0.00	0.25	0.50	0.75	1.00
y:	1.000	0.9896	0.9589	0.9089	0.8415
and the the second s					

Estimate the volume formed using Simpson's one third rule.

[(MATH2202.2, MATH2202.6)(Apply/IOCQ)]

(b) Evaluate the integral $\int_0^{\frac{\pi}{2}} \sqrt{1 - 0.162 \sin^2 x} \, dx$ by Weddle's rule. [(MATH2202.2, MATH2202.6)(Evaluate/HOCQ)] **6 + 6 = 12**

Group - E

8. Derive the value of Golden ratio and use the Golden Section Search technique to minimize the function $f(x) = 4x^3 + x^2 - 7x + 14$ in the interval [0,1] taking tolerance to be less than 0.15. [(MATH2202.5, MATH2202.6)(Apply/IOCQ)]

12

9. Use Dichotomous search algorithm to minimize the function $f(x) = x^2(x - 3.5)$, over [0,1] using tolerance 0.15. Consider $\in = 0.001$. [(MATH2202.5, MATH2202.6)(Apply/IOCQ)] 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	23.96	56.25	19.79

Course Outcome (CO):

After the completion of the course students will be able to

- MATH2202.1 Analyze certain algorithms, numerical techniques and iterative methods that are used for solving system of linear equations.
- MATH2202.2 Implement appropriate numerical methods for solving advanced engineering problems dealing with interpolation, integration and differentiation.
- MATH2202.3 Apply the knowledge of matrices for calculating eigenvalues and eigenvectors and their stability for reducing problems involving Science and Engineering
- MATH2202.4 Develop an understanding to reduce a matrix to its constituent parts in order to make certain subsequent calculations simpler.
- MATH2202.5 Apply various optimization methods for solving realistic engineering problems.

MATH2202.6 Compare the accuracy and efficiency of the above mentioned methods.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.