B.TECH/IT/4TH SEM/INFO 2203 (BACKLOG)/2023

INFORMATION THEORY & CODING (INFO 2203)

Time Allotted : 3 hrs

1.

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	$10 \times 1 = 10$					
(i)	When If t is the error correction ca distance of the code? (a) 2t (b) 2t + 1		apability of BCH (c) 2t-1	de, what is the minimum (d) None of these.		
(ii)	The length of (a) 12	the output for a (2, 1 (b) 14	1, 3) convolution (c) 10	code for the message 1101 is (d) 16.		
(iii)	Hamming dist (a) 1	ance between 1100 (b) 5	001011 and 100 (c) 4	1101001 is (d) 3.		
(iv)	A (7, 4) linear (a) 7	block code has a ra (b) 1.75	te of (c) 4	(d) .57.		
(v) `	For a (2, 1, 2) word for data (a) 01110111 (c) 11001110	convolution encode 101 is	r, impulse respor (b) 110 (d) 010	nse is 1101. The output code 11101 10101.		
(vi)	Mutual information of the channel is(a) H(A) + H(A/B)(b) H(A) / H(A/B)(c) H(A) - H(A/B)(d) H(A) . H(A/B).					
(vii) (viii)	The mutual in (a) 0 A (n, k) block information b (a) n + k	formation (I) is alw (b) > 0 code consists of its. (b) n	ays (c) ≥ 0 number of ch (c) n/k	(d) ≤ 0. neck bits added to k number of (d) n - k.		
(ix)	If R is a codew true for correc (a) RH = 0	vord and H is a parit ctly received codew (b) RH ^t ≠0	ty check matrix, tl ord? (c) R ^t H = 0	hen which of the following is (d) RH ^t = 0.		

B.TECH/IT/4TH SEM/INFO 2203 (BACKLOG)/2023

- (x) What is the mutual information of a channel with independent inputs?
 (a) Zero
 (b) Constant
 - (c) Variable

(d) Infinity.

Group – B

- 2. Consider a source that, emits nine symbols with the following probabilities 0.25, 0.15, 0.15, 0.12, 0.10, 0.08, 0.06, 0.05, 0.04.
 - (i) Find the code word for the symbols using Shannon-Fano algorithm.
 - (ii) Compare its efficiency with Shannon-Fano-Elias algorithm.

(5+1) + (5+1) = 12

3. (a) Find Apply the Huffman coding for a DMS with the following source symbols and the given occurrence probabilities:

Х	X ₁	X ₂	X3	X4	X 5	X6	X ₇
$P(x_i)$	0.4	0.2	0.12	0.08	0.08	0.06	0.06

- (i) Draw the Huffman tree.
- (ii) Calculate its efficiency.
- (b) Consider a binary memoryless source X with two symbols X1 and X2. Prove that entropy of the source H(X) is maximum when both X1 and X2 are equiprobable
- (c) Show that H(X, Y) = H(X|Y) + H(Y).

6 + 3 + 3 = 12

Group – C

- 4. (a) For systematic (7, 4) cyclic code, determine the generator matrix and parity check matrix, where generator polynomial is G(x) = p3 + p + 1.
 - (b) A generator matrix of (6, 3) linear block code is given below:

$$\mathbf{H} = \begin{bmatrix} 100111\\ 010110\\ 001011 \end{bmatrix}$$

- (i) Determine the d_{min} for the above code.
- (ii) If the received codeword is 101101, determine the message bit sequence.

6 + (3 + 3) = 12

5. For a linear block code, the syndrome is given by:

S1 = m1 + m2 + m3 + m5

S2 = m1 + m2 + m4 + m6

- S3 = m1 + m3 + m4 + m7
- (i) Find the parity check matrix.
- (ii) Draw the encoder circuit.
- (iii) Find the code words for a few input sequences.
- (iv) How many errors can be detected and corrected?
- (v) What is the syndrome for the received data 1011011?

(2 + 3 + 4 + 2 + 1) = 12

B.TECH/IT/4TH SEM/INFO 2203 (BACKLOG)/2023

Group – D

- 6. (a) Find the conjugates for the field element α in GF (25).
 - (b) Find (i) $\alpha^2 + \alpha^9$ (ii) $\alpha^3 + \alpha^7 + \alpha^{11}$ (iii) $\alpha^{13} + \alpha^2$ in GF(2⁴).
 - (c) State the properties of Galois Field.

3 + 6 + 3 = 12

- 7. (a) Find the generator polynomial g(x) for a single error correcting binary BCH code of block length 31 over GF (2⁵). Use primitive polynomial $p(x) = x^5 + x^2 + 1$.
 - (b) Find the minimal polynomial for the field element α in GF (2⁴). Use the primitive polynomial p (x) = x⁴ + x + 1 to construct GF (2⁴).

7 + 5 = 12

Group – E

- 8. Consider the (3, 1, 2) convolutional encoder with impulse response,
 - $g^1 = \{1 \ 1 \ 0\}, \qquad g^2 = \{1 \ 0 \ 1\}, \qquad g^3 = \{1 \ 1 \ 1\}$

(i) Draw the encoder block diagram.

- (ii) Find the generator matrix and output code vector for input message $m = \{1 \ 1 \ 1 \ 0 \ 1\}$.
 - 2 + (4 + 2 + 2) + 2 = 12
- 9. Explain Viterbi Algorithm to decode the convolutional codes with suitable example. (6 + 6) = 12