MATH 2203

B.TECH/IT/4TH SEM/MATH 2203 (BACKLOG)/2023

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:

CHOOS	Se the correct alternative for the following. $10 \times 1 - 10$						
(i)	The chron (a) $\lambda(\lambda - 1)$ (c) $\lambda(\lambda - 1)$		-	(b) $\lambda(\lambda + 1)(\lambda + 2)$ (d) $\lambda(\lambda - 1)^2$			
(ii)	The numb (a) 5	er of elements in (b) 20	the symmetric (c) 120	group S ₅ is (d) 55.			
(iii)	indicate w (a) $aH = H$ (c) $Ha \cap H$	which of the follow Ha $Hb \neq \phi$ and $Ha \neq b$	wing statements = Hb	(b) $Ha \cap Hb = \phi$ (d) $aH = bH$.			
(iv)	The order of the permutation $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is						
	(a) 2	(b) 3	(c) 1	(d) 4.			
(v)	The numb (a) 7	er of elements of (b) 2	f order 6 in the c (c) 3	yclic group of order 42 is (d) 42.			
(vi)	Index of a G is (a) 8	subgroup <i>H</i> of a (b) 10	group <i>G</i> is 5 and (c) 15	d its order is 3. The order of the group (d) 25.			
(vii)	The only generator(s) of the cyclic group $(\mathbb{Z}, +)$ is / are (a) 1 (b) 0,1 (c) 1, -1 (d) none of these.						
(viii)	Consider Which one (a) R is sy (b) R is n (c) R is b	the binary relati e of the following ymmetric but not ot symmetric but oth symmetric an	on $R = \{(x, y), (x, y), (x, y), (x, y), (x, y), (x, y), (x, y), (y, $	$\{x, z\}, (z, x), (z, y)\}$ on the set $\{x, y, z\}$.			

(d) R is neither symmetric nor antisymmetric.

.

Full Marks: 70

 $10 \times 1 = 10$

B.TECH/IT/4TH SEM/MATH 2203 (BACKLOG)/2023

- (ix) If x is an element of a group G and O(x) = 5, then (a) $O(x^{10}) = 5$ (b) $O(x^{15}) = 5$ (c) $O(x^{23}) = 5$ (d) $O(x^{20}) = 5$
- (x) The symmetric group S₃ is
 (a) cyclic but not abelian
 (c) non cyclic and non-abelian
- (b) cyclic and abelian(d) none of these.

Group - B

2. (a) Find the chromatic polynomial of the following disconnected graphG:

[(Evaluate/HOCQ)]

- (b) Let G be a graph which has more than one edge. Prove that the sum of the coefficients in its chromatic polynomial is 0. [(Remember/LOCQ)]
 6+6=12
- 3. (a) Prove that $\lambda^4 3\lambda^3 + 4\lambda^2$ cannot be a chromatic polynomial of a graph G.

(b) How many edges a planar graph must have with 5 regions and 7 vertices? Draw one such graph. [(Analyze/IOCQ)]

6 + 6 = 12

[(Analyze/IOCQ)]

Group - C

- 4. (a) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 6 \end{pmatrix}$ Compute each of the following: (i) α^{-1} (ii) $\alpha\beta$
 - (b) Show that the set $G = \{(a + b\sqrt{2}) : a, b \in \mathbb{Q}\}$ is a group with respect to addition, where \mathbb{Q} denotes the set of rationals. [(Apply/IOCQ)] 6 + 6 = 12
- 5. (a) Prove that the order of an element of a group is same as that of its inverse.
 - (b) If *G* is a group such that $a^2 = e$ for all $a \in G$. Show that *G* is abelian. Is it true if $a^3 = e$, for all $a \in G$?

6 + 6 = 12

Group - D

6. (a) Prove that every cyclic group is abelian. Is the converse true? Justify your answer. [(Remember/LOCQ)]
 (b) If *a* be an element of order *n* in a group G and *p* be prime to *n*, then prove that a^p is also of order *n*. [(Analyze/IOCQ)]
 6 + 6 = 12

B.TECH/IT/4TH SEM/MATH 2203 (BACKLOG)/2023

- 7. (a) Prove that a group (G,*) is commutative if $(a*b)^n = a^n * b^n$, for any three consecutive integers n and for all $a, b \in G$. [(Understand/LOCQ)]
 - (b) Let H be a subgroup of a group G and let $a, b \in G$. Prove that aH = bH if and only if $a^{-1}b \in H$.

6 + 6 = 12

Group - E

8. (a) Prove that the ring of matrices
$$R = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{R} \right\}$$
 is a field.

(b) Solve the equation $x^2 + 2x + 4 = 0$ in \mathbb{Z}_6 .

[(Remember/LOCQ)] [(Evaluate/HOCQ)] **6 + 6 = 12**

- 9. (a) Prove that every finite integral domain is a field. [(Understand/LOCQ)]
 - (b) Examine if the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field. *[(Apply/LOCQ)]*

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	43.75	43.75	12.5

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question