NUMERICAL & STATISTICAL METHODS (MATH 2002)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	e the correct alte	rnative for the followi	ng:	10 × 1 = 10
	(i)	The order of conv (a) linear	vergence of bisection m (b) quadratic	ethod is (c) cubic	(d) 1.5.
	(ii)	simultaneously is		-	
		(a) $\frac{7}{2}$	(b) $\frac{2}{7}$	(c) $\frac{4}{49}$	$(d)\frac{49}{4}.$
	(iii)	respectively. The	variance of a Binomia on the value of n and p and $p = 1$	re	5
		(a) $\left(15, \frac{2}{3}\right)$	(b) $\left(15, \frac{1}{3}\right)$	(c) $\left(10, \frac{2}{3}\right)$	(d) $(10, \frac{1}{3})$
	(iv)	If X and Y are ind	ependent of each other,	then r_{xy} is	
		(a) –1	(b) 0	(c) 1	(d) 0.5.
	(v)	A system of equa if	tions AX = b where <i>A</i> =	$(a_{ij})_{n \times n}$ is said to be	e diagonally dominant
		(a) $ a_{ii} \ge \sum_{\substack{j=1 \ i \neq j}}^{n} a_{ii} $	a_{ij} for all i	(b) $ a_{ii} < \sum_{j=1}^{n} a_{ii} $ (d) $ a_{ii} < \sum_{j=1}^{n} a_{ij} $	a_{ij} for all i
		(c) $ a_{ii} > \sum_{j=1}^{n} a_{ij} $	a _{ij} for all i	(d) $ a_{ii} < \sum_{j=1}^{n} $	a_{ij} for all <i>i</i> .
	(vi)	If two events A as (a) -0.01	nd <i>B</i> are mutually exclu (b) 0	sive, then $P(A \cap B$ (c) 1) is (d) 0.5.
	(vii)	 vii) Newton backward interpolation formula is used for (a) equal intervals (b) unequal interva (c) both equal & unequal intervals (d) even no. of interval 			
	(viii)	$\Delta^n x^n =?$ (a) n!	(b) (<i>n</i> − 1)!	(c) <i>n</i> ²	(d) 0 _.

- (ix) The mode and median of the observation 4, 6, 6, 8, 3, 8, 8 & 4 are (a) 8 and 6 (b) 8.5 and 6.5 (c) 5 and 7 (d) 4 and 3.
- (x) A matrix A can be factorized into lower and upper triangular matrix if all the principal minors of A are
 (a) singular
 (b) non-singular
 (c) zero
 (d) have determinant value ±1.

Group - B

2. (a) Solve the following system of equations by Gauss-elimination method:

$$x + 3y + 2z = 5$$

$$2x - y + z = -1$$

$$x + 2y + 3z = -2$$

[(Understand/LOCQ)]

- (b) Compute, by the Newton-Raphson method, the root of the equation $x^3 x 1 = 0$ that lies between x = 1 and x = 2, correct to three places of decimal. [(Apply/IOCQ)] 6 + 6 = 12
- 3. (a) Find the smallest positive root of the equation $xe^x 1 = 0$, correct to 3 significant figures using bisection method. [(Apply/IOCQ)]
 - (b) Solve the following system of linear equations, correct to 2 decimal places, by Gauss Siedel method.

$$x + 10y + z = 20.88$$

$$10x + y - z = 11.19$$

$$-x + y + 10z = 35.61$$

[(Apply/IOCQ)] 6 + 6 = 12

Group - C

4. (a) Calculate f(5) by using Lagrange's interpolation formula, given the following data.

x	3	7	9	12
f(x)	11	17	24	30

[(Understand/IOCQ)]

- (b) Solve $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0 using Euler's method and find y(0.1) & y(0.2) using h = 0.05. [(Remember/LOCQ)] 6 + 6 = 12
- 5. (a) Compute the value of π from the formula $\frac{\pi}{4} = \int_0^1 \frac{1}{1+x^2} dx$ using Trapezoidal rule taking the 10 sub-intervals. [(Apply/IOCQ)]
 - (b) Compute f(0.29) by Newton's backward difference interpolation formula from the following table:

x	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

[(Evaluate/HOCQ)] 6 + 6 = 12

MATH 2002

Group - D

- 6. (a) Two newspapers *X* and *Y* are published in a certain city. It is estimated from a survey that 16% read *X*, 14% read *Y* and 5% read both the newspapers. Find the probabilities that a randomly selected person
 - (i) does not read any newspaper

(ii) read only *Y*.

(b) If *A* and *B* are two independent events, then prove that *A^c* and *B^c* are also independent. [(Remember/LOCQ)]

6 + 6 = 12

[(Understand/IOCQ)]

- 7. (a) There are two identical urns containing 4 white and 3 red balls; 3 white and 7 red balls. An urn is chosen at random and a ball is drawn from it. Find the probability that the ball is white. What is the probability that it is from the first urn if the ball drawn is white? [(Apply/IOCQ)]
 - (b) A bag contains 5 white and 4 black balls. If 3 balls are drawn at random, what are the probabilities of the following?
 - (i) two of them are white
 - (ii) at most one of them is white
 - (iii) at least two are white.

[(Understand/IOCQ)] 6 + 6 = 12

Group - E

8. (a) Assuming that the height distribution of a group is normal, find the mean and standard deviation if 84% of the men have heights less than 65.2 inches and 68% have heights lying between 62.8 and 65.2 inches.

[Given $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.9} e^{-\frac{t^2}{2}} dt = 0.84$ and $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-0.9} e^{-\frac{t^2}{2}} dt = 0.16$] [(Apply/IOCQ)] For two variables x and y the equations of two regression lines are x + 2y + 5 =

(b) For two variables x and y the equations of two regression lines are x + 2y + 5 = 0 and 2x + 3y + 8 = 0. Identify which one is the regression line of y on x. Find the means of x & y. Find the correlation coefficient between x and y.

 $[(Analyze/IOCQ)] \\ \mathbf{6} + \mathbf{6} = \mathbf{12}$

9. (a) Show that the function f(x) given by

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ k - x, & 1 \le x < 2 \\ 0, & otherwise \end{cases}$$

is a probability density function, for a suitable value of the constant *k*. Construct the distribution function of a random variable *X* and compute the probability that the random variable *X* lies between $\frac{1}{2}$ and $\frac{3}{2}$. *[(Evaluate/HOCQ)]*

(b) A random variable *X* follows binomial distribution with mean 4 and standard deviation $\sqrt{2}$. Find the probability of assuming the non-zero value of the variable. [(Understand/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	43.75	43.75	12.5

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question