B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/CSE(AI&ML)/CSE(DS)/CSE(IoT)/ECE/EE/IT/ME/ 2ND SEM/MATH 1201/2023

MATHEMATICS II (MATH 1201)

Full Marks: 70

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					10 × 1 = 10	
	(i)	The rate of convergence of bisection method is (a) linear (b) quadratic (c) biquadratic				(d) cubic.	
	(ii)		d <i>B</i> are independent events such that $P(B) = \frac{2}{7}$ and $P(A + \overline{B}) = \overline{B}$ is the complement of the event <i>B</i> , then $P(A)$ is (b) 0.2 (c) 0.3 (d) 0.4.				
	(iii)	If all the element second vertex v_2 (a) pendant (c) odd		(b	of an incidence matrix <i>I(G)</i> are zero then the (b) isolated (d) of degree 3.		
	(iv)	Laplace transform (a) $\frac{1}{s-2}$ (c) $\frac{1}{(s-2)^2}$	aplace transform of $f(t) = te^{2t}$ is a) $\frac{1}{s-2}$ c) $\frac{1}{(s-2)^2}$		s (b) $2(s-2)^2$ (d) $\frac{1}{s+2}$.		
	(v)	A complete graph must be a (a) cycle (c) non-simple graph		(b) regular graph (d) bipartite graph.			
	 (vi) If a binary tree has 20 pendant w the tree is (a) 20 (b) 21 			rtices the (c) 23	n the number of inte		
	(vii)	Gauss-eliminatio (a) 0	n method fails wh (b) 1	en any on (c) 2	e of the pivotal elem (d) –1.	ents is	
	(viii)	The value of $\int_0^\infty e^{i\theta}$ (a) $\frac{3}{4}\sqrt{\pi}$	0	(c) $\frac{5}{4}\sqrt{\pi}$	(d) $\frac{1}{4}\sqrt{\pi}$.		
MATH 1201				1			

B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/CSE(AI&ML)/CSE(DS)/CSE(IoT)/ECE/EE/IT/ME/2ND SEM/MATH 1201/2023

(ix) A random variable X has the following probability density function

$$f(x) = \begin{cases} k, -2 < x < 1 \\ 0, elsewhere' \\ \text{then the value of the constant } k \text{ is} \\ (a) \frac{1}{8} \\ \end{cases} \quad (b) \frac{1}{2} \\ (c) \frac{1}{4} \\ (d) \frac{1}{12} \\ (d) \frac{1}{12} \\ (d) \frac{1}{12} \\ (d) \frac{3}{3s+1} \\ (d) \frac{3}$$

Group - B

- 2. It is known that glucose level in the blood of diabetic persons follows a normal (a) distribution model with mean 106 mg / 100 ml and standard deviation 8 mg / 100 ml.
 - Calculate the probability of a random diabetic person having a glucose level (i) less than 120 mg / 100 ml.
 - (ii) What percentage of persons have glucose level between 90 mg/100 ml and 120 mg/100 ml? [(MATH1201.1, MATH1201.2) (Evaluate /HOCQ)]
 - The distance (in kilometers) travelled by a cyclist in a day is a continuous (b) random variable *X* whose cumulative distribution function (c.d.f.) is given by:

$$F(x) = \begin{cases} 0 & , & x < 0\\ \frac{x^3}{216} & , & 0 \le x < 6\\ 1 & , & x \ge 6 \end{cases}$$

What is the average distance travelled by the cyclist? Further find the standard deviation of the distance travelled by the cyclist from the average distance.

[(MATH1201.1, MATH1201.2)(Analyse/IOCQ)] 6 + 6 = 12

- A random variable *X* follows a binomial distribution with mean 4 and standard 3. (a) deviation $\sqrt{2}$. Find the probability of assuming the non-zero values of the [(MATH1201.1, MATH1201.2) (Understand/LOCQ)] variable.
 - It is estimated that 50% of emails are spam emails. Some software has been (b) applied to filter these spam emails before they reach your inbox. Its accuracy for detecting a spam mail is 99% of the spam emails (a spam email detected as spam), and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a non- spam email? [(MATH1201.1, MATH1201.2)(Understand/LOCQ)]

6 + 6 = 12

Group - C

Solve the following system of linear equations by Gauss-Seidel method, correct 4. (a) to 3 decimal places.

$$x + 4y - z = 6$$

$$x - y + 5z = 7$$

$$6x + y + z = 20$$

[(MATH1201.3) (Apply/IOCQ)]

MATH 1201

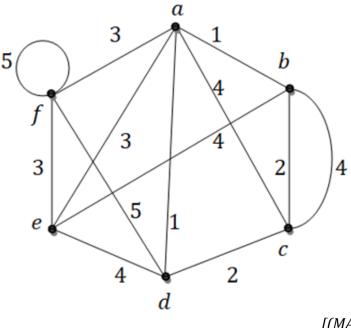
B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/CSE(AI&ML)/CSE(DS)/CSE(IoT)/ECE/EE/IT/ME/2ND SEM/MATH 1201/2023

(b) Using Newton-Raphson method evaluate $\sqrt[5]{3}$, correct upto four decimal places. [(MATH1201.3) (Apply/IOCQ)] 6 + 6 = 12

5. (a) Solve the following system of equations by Gauss-elimination method:

$$2x + 8y + 2z = 14$$

 $x + 6y - z = 13$


2x - y + 2z = 5[(MATH1201.3) (Understand/LOCQ)] (b) Using Runge-Kutta method of fourth order, find y(1.4) for $\frac{dy}{dx} = 3x + y^2$, y(1) = 1 by taking h = 0.2.
[(MATH1201.3)(Apply/IOCQ)] 6 + 6 = 12

Group - D

6. (a) A non-digraph *G* has 6 vertices each of degree 3 and remaining vertices have degree less than 3. Find the minimum number of vertices *G* may have.

[(MATH1201.4)(Evaluate/HOCQ)]

(b) Find the minimal spanning tree and its weight by Kruskal's algorithm for the following graph:

[(MATH1201.4)(Apply/IOCQ)] 6 + 6 = 12

- 7. (a) If a simple regular graph has *n* vertices and 24 edges , find all possible values of *n*. [(MATH1201.4)(Analyze/IOCQ)]
 - (b) Construct the graph whose incidence matrix is given as

	e_1	e_2	e_3	e_4	e_5
v_1	$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$	0	0	1	$\begin{bmatrix} 1\\0\\0\end{bmatrix}$.
v_2	1	1	0	0	0
v_3	0	1	1	0	0
v_4	Γ0	0	1	1	1]

[(MATH1201.4) (Understand/LOCQ)]

B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/CSE(AI&ML)/CSE(DS)/CSE(IoT)/ECE/EE/IT/ME/2ND SEM/MATH 1201/2023

(c) Let *T* be a tree with 32 edges. Removal of one edge from *T*, two disjoint trees T_1 and T_2 are obtained. If number of vertices of T_1 is twice the number of edges in T_2 , find the number of edges in T_1 and T_2 . [(MATH1201.4) (Understand/LOCQ)] **6** + **3** + **3** = **12**

Group - E

8. (a) Using Laplace transformation solve the following initial value problem:

$$\frac{d^{2}y}{dt^{2}} + \frac{dy}{dt} = \sin 2t, \quad y(0) = 0, \quad y'(0) = 1.$$
[(MATH1201.5, MATH1201.6) (Understand /LOCQ)]
(b) Evaluate:
$$\int_{0}^{1} \frac{dx}{(1-x^{6})^{\frac{1}{6}}}.$$
[(MATH1201.5, MATH1201.6)(Evaluate/HOCQ)]
(b) Evaluate function $f(t) = \begin{cases} t-1, \quad 1 < t < 2\\ 3-t, \quad 2 < t < 3 \end{cases}$
in terms of unit step function and hence find L{ $f(t)$ }.
[(MATH1201.5, MATH1201.6) (Apply/IOCQ)]
(b) Evaluate $L^{-1}\left\{\frac{4s+5}{(s-4)^{2}(s+3)}\right\}.$
[(MATH1201.5, MATH1201.6) (Apply/IOCQ)]
(c) Find L{ $e^{t} \sin t \cos t$ }.
[(MATH1201.5, MATH1201.6) (Understand /LOCQ)]
(c) Find L{ $e^{t} \sin t \cos t$ }.

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33	47.92	18.75

Course Outcome (CO):

After the completion of the course students will be able to

- MATH1201.1. Demonstrate the knowledge of probabilistic approaches to solve wide range of engineering problem.
- MATH1201.2. Recognize probability distribution for discrete and continuous variables to quantify physical and engineering phenomenon.
- MATH1201. 3. Develop numerical techniques to obtain approximate solutions to mathematical problems where analytical solutions are not possible to evaluate.
- MATH1201. 4. Analyze certain physical problems that can be transformed in terms of graphs and trees and solving problems involving searching, sorting and such other algorithms.
- MATH1201. 5. Apply techniques of Laplace Transform and its inverse in various advanced engineering problems.
- MATH1201.6. Interpret differential equations and reduce them to mere algebraic equations using Laplace Transform to solve easily.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.