## **BIOREACTOR DESIGN AND ANALYSIS** (BIOT 3202)

**Time Allotted : 3 hrs** 

1.

Figures out of the right margin indicate full marks.

## Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group. Symbols are of usual significance Candidates are required to give answer in their own words as far as practicable.

# Group - A (Multiple Choice Type Questions)

| Choo  | Choose the correct alternative for the following:                                                                      |                                                                                    |                    |                                                     |                                                |                 |
|-------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|------------------------------------------------|-----------------|
| (i)   | Damkohler num<br>(a) pore diffusior<br>(c) combination o                                                               | ber(Da )is a mea<br>1<br>of (a) and (b)                                            | asure o            | f<br>(b) film dif<br>(d) none of                    | fusion<br>f (a), (b) & (c)                     | ).              |
| (ii)  | The approximate<br>rate is 0.35/hr. is<br>(a) 1 hr                                                                     | e doubling time o<br>;<br>(b) 3 hr                                                 | of a mi<br>(c) 2   | crobial cult<br>hr                                  | ure where s<br>(d) 6 hr.                       | pecific growth  |
| (iii) | The best method<br>(a) P I control sys<br>(c) PD control sy                                                            | of control Bioreac<br>stem<br>vstem                                                | ctor sys           | stem is<br>(b) PID cor<br>(d) none of               | ntrol system<br>f (a), (b) & (c)               | ).              |
| (iv)  | Thiele parameter<br>(a) molecular dif<br>(c) pore diffusior                                                            | r predicts the effec<br>fusion<br>n                                                | ct of              | (b) chemic<br>(d) combin                            | al reaction<br>ation of (a) a                  | and (b).        |
| (v)   | Monod model fol<br>(a) zero order kin<br>(c) shifting order                                                            | lows<br>netics<br>kinetics                                                         |                    | (b) 1 <sup>st</sup> orde<br>(d) 2 <sup>nd</sup> ord | er kinetics<br>er kinetics.                    |                 |
| (vi)  | Immobilized ce<br>having/being<br>(a) higher cell co<br>(b) more stable p<br>(c) higher dilutio<br>(d) all of the abov | ll reactors for want<br>ncentration<br>prevents washout<br>n rate before the cove. | aste w<br>cells wa | ater treatma                                        | ent have the                                   | e advantage of  |
| (vii) | The kinetics of m<br>(a) growth assoc<br>(c) Monod model                                                               | onoclonal antibod<br>iated                                                         | lies are           | e described b<br>(b) non-gro<br>(d) combin          | by the type<br>bowth associa<br>ation of (a) a | ted<br>and (b). |

Full Marks: 70

- (viii) A batch reactor is characterised by
  - (a) residence time distribution
  - (b) variation in extent of reaction and properties of the reaction mixture with time
  - (c) variation in reactor volume
  - (d) very low conversion.
- (ix) Air-lift fermenter may be design on the basis of
  - (a) plug flow (b) plug flow with dispersion
  - (c) completely mixed system
- (d) segregated model.
- (x) A bubble column used for aerobic fermentation is best modelled by
   (a) plug flow
   (b) CSTR
   (c) dispersion model
   (d) plug flow with axial dispersion.
  - Group B
- 2. (a) Describe the method of K<sub>L</sub>a measurement in a fermenter by dynamic method. [(CO2) (Illustrate/IOCQ)]
  - (b) The growth of microorganism is given by the following kinetics:  $\mu = \mu_{max} (1 - e^{-S/K})$ where  $\mu_{max} = 0.4 \text{ hr}^{-1}$ , K= 6.0 kg/m<sup>3</sup>, Yx/s = 0.5 The microorganism is cultivated in 10 m<sup>3</sup> chemostat with a flow rate of 3 m<sup>3</sup>/hr. Initial substrate concentration is 10 kg/m<sup>3</sup>. What will be the steady state

concentration of substrate and biomass at the exit of the chemostat? [(CO1) (Evaluate/IOCQ)]

6 + 6 = 12

- *3. Pseudomonas sp* has minimum doubling time of 2.4 hrs when grown on acetate (in a chemostat operation that follows the Monod model). Given, Ks=1.3 g/L, Yx/s=0.46 g cell/g acetate, and So= 38g/L.
  - (i) Find S and X when D=1/2 of Dmax.
  - (ii) Find cell mass productivity at 0.8 Dmax.
  - (iii) Find Dwashout.

[(CO2) (Evaluate/HOCQ)]4 + 4 + 4 = 12

# Group - C

- 4. (a) Derive nth. Order rate equation. [(CO1) (Remember/LOCQ)]
  (b) An aqueous feed of A and B (400 liter/min, 100 m mol A/lit, 200 m mol B/lit) is to be converted to product in a plug flow reactor. The kinetics of the
  - reaction is represented by A + B  $\rightarrow$  R, -r<sub>A</sub> = 200 C<sub>A</sub> C<sub>B</sub> [mol/lit min]

Find the volume of the reactor for 98.5% conversion of A to product.

[(CO4) (Understand/IOCQ)]

2 + 10 = 12

5. A mixed flow reactor (2 m<sup>3</sup>) processes an aqueous feed (100 liter/min) containing Reactant A ( $C_{A0} = 100 \text{ m mol/lit}$ ). The reaction is reversible and represented by A  $\rightarrow$  R (reversible), -r<sub>A</sub> = 0.04 C<sub>A</sub> - 0.01 C<sub>R</sub> [mol/lit min] What is the equilibrium conversion and the actual conversion in the reactor? [(CO4) (Remember/IOCQ)]

2 + 10 = 12

# Group - D

6. The concentration reading given below represents a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of the fluid in the vessel and construct C- curve and E - curve (calculate area under the curve).

|                             |   |   |    |    |    |    |    |    |    |    |    |    | [(CO5 | ') ( Ana<br><b>2 + 4</b> | lyze/HOCQ)]<br>+ <b>6 = 12</b> | ) |
|-----------------------------|---|---|----|----|----|----|----|----|----|----|----|----|-------|--------------------------|--------------------------------|---|
| C <sub>pulse</sub> (gm/lit) | 0 | 3 | 5  | 6  | 7  | 8  | 6  | 5  | 4  | 3  | 2  | 1  | 0.5   | 0.25                     | 0.0                            |   |
| Time t (min)                | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60    | 65                       | infinite                       |   |

- 7. (a) Explain the significance of C –curve and E curve. [(CO5) (Remember/LOCQ)]
  - (b) A large tank (860 liters) is used as a gas-liquid contactor. Gas bubbles up through the vessels and out from the top, liquid flows in at one part and out the other at 5 lit./sec to get an idea of the flow pattern of liquid in this tank a pulse of tracer (M = 150 gm) is injected at the liquid inlet and measured at the outlet, as shown below.



3 + 9 = 12

## Group – E

8. (a) Define enzyme.

(b) Substrate A and enzyme E flow through a M F R (V= 6 lit.). From the entering and leaving concentrations and flow rate find a rate equation to represent the action of enzyme on substrate.

| C <sub>E0</sub> (mol/lit.) | C <sub>A0</sub> (mol/lit.) | C <sub>A</sub> (mol/lit.) | v (lit./min)              |
|----------------------------|----------------------------|---------------------------|---------------------------|
| 0.02                       | 0.2                        | 0.04                      | 3.0                       |
| 0.01                       | 0.3                        | 0.15                      | 4.0                       |
| 0.001                      | 0.69                       | 0.60                      | 1.2                       |
|                            |                            |                           | [(CO3) (Understand/IOCQ)] |
|                            |                            |                           | 2 + 10 = 12               |

9. (a) Explain the operating principles of the following : Membrane bioreactor, Fed batch system.

[(CO3) ( Remember/IOCQ)]

(b)  $A \rightarrow$  product Derive the first order and second order rate equation and show the result graphically in terms of  $C_A$  and  $X_A$ . [(C01) (Remember/IOCQ)] [(C01) (Remember/IOCQ)]

(3+3) + (3+3) = 12

| Cognition Level         | LOCQ | IOCQ  | HOCQ  |
|-------------------------|------|-------|-------|
| Percentage distribution | 7.29 | 58.33 | 34.37 |

#### Course Outcome (CO):

After completing the course, the students will be able to:

- 1. Develop basic concept of reaction engineering.
- 2. Understand basic concepts of bioreactor design and analysis.
- 3. Understand the basic operating principles of bioreactors.
- 4. Interpret batch reactor data with reference to basic reactor design for a single reaction ideal reactor.
- 5. Analyze non-ideal flow pattern with reference to residence time distribution (RTD) and dispersion numbers (D/UL)
- 6. Analyze basic cell growth data to verify Monod model.

\*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.