B.TECH/ME/7TH SEM/MECH 4144/2020

COMPUTATIONAL FLUID DYNAMICS (MECH 4144)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

	(Multiple Choice Type Questions)						
l.	Choose the correct alternative for the following:				10 × 1 = 10		
	(i)	Derivative in the Eu(a) substantial	llerian framework is (b) temporal	(c) total	(d) convective		
	(ii)	Unsteady fluid flow (a) time independent (c) uniform in space	nt	perties and flow para (b) time dep (d) space de			
	(iii)	Rate of linear deformable (a) $\frac{\partial u}{\partial z}$	mation of a fluid eler (b) $\frac{\partial v}{\partial z}$	ment along z axis is $(c) \frac{\partial w}{\partial z}$	(d) $\frac{\partial v}{\partial x}$		
	(iv)	Out of the following (a) shear force (c) force due to pres	s which is known as ' ssure	(b) weight d	ue to gravity eaction force.		
	(v)	A general variable (a) any scalar (c) both (a) and (b)	p in the general trans	sport equation means (b) any vecto (d) only den	or		
	(vi)	Central differencing (a) convection prob (c) convection-diffu	lems	uitable for accuracy o (b) diffusion (d) radiatior	problems		
	(vii)	A 'node' is situated (a) east boundary (c) centre	at the of	a cell (b) west bou (d) both (a)	•		
	(viii)	A hybrid mesh strue (a) triangular and q (c) quadrilateral an	uadrilateral cells	al domain is compos (b) tetrahedral and (d) triangular and	d hexahedral cells		

B.TECH/ME/7TH SEM/MECH 4144/2020

- (ix) Which one out of the following is not CFD software?
 - (a) FLUENT

(b) OpenFOAM

(c) CFX

(d) STAAD

(x) Hexahedral cells have

(a) 4 faces

- (b) 5 faces
- (c) 6 faces

(d) 8 faces.

Group - B

- 2. (a) Relate the Eulerian and Lagrangian frame of reference in fluid flow systems.
 - (b) Interpret the mass conservation principle on infinitesimal control volume in a fluid flow system.

6 + 6 = 12

- 3. (a) Summarize the Navier-Stokes equations for Newtonian fluids and explain the significance of various terms.
 - (b) Show the different forces acting on an infinitesimally small control volume in a laminar fluid flow domain with standard notations.

6 + 6 = 12

Group - C

4. Construct a one-dimensional grid arrangement with all important features and build the algebric expressions considering steady state, source free convection-diffusion problem.

12

5. Consider one-dimensional source free convection-diffusion problem where a property φ is being transported in the domain. The domain length L=2m, density φ =2 kg/m³, and diffusion coefficient μ =0.2 Pa-s. The boundary conditions are φ_0 =2 at x=0 and φ_L =0 at x=2m. Express simplified algebric equations for φ on one intermediate node and one boundary node using five equal cells in the domain and central differencing scheme. Assume fluid velocity u=0.2m/s all through.

12

Group - D

6. Examine the necessity of pressure-velocity coupling in steady flows leading to the requirement of staggered-grid configuration.

12

7. Briefly explain any pressure-velocity coupling algorithm using a flow-chart diagram for calculating pressure and velocities in iterative method.

12

Group - E

8. Consider the following matrix expression and solve for θ using Tri Diagonal Matrix Algorithm (TDMA).

$$\begin{bmatrix} 300 & -100 & 0 & 0 & 0 \\ -100 & 200 & -100 & 0 & 0 \\ 0 & -100 & 200 & -100 & 0 \\ 0 & 0 & -100 & 200 & -100 \\ 0 & 0 & 0 & -100 & 300 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{bmatrix} = \begin{bmatrix} 2000 \\ 0 \\ 0 \\ 10000 \end{bmatrix}$$

12

- 9. Write short notes on:
 - (i) Structured mesh generation.
 - (ii) Pre-Processing in CFD software.
 - (iii) Processing in CFD software.

4 + 4 + 4 = 12

Department & Section	Submission link:		
ME	https://classroom.google.com/c/MTIyNDgzODAxODA3?cjc=t4nm3dq		