M.TECH/CSE/ECE/VLSI/3RD SEM/MATH 6121/2020 OPTIMIZATION TECHNIQUES (MATH 6121)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

(i)	If the primal contains <i>n</i> variables, th	nen the dual has
	(a) <i>n</i> constraints	(b) <i>n</i> -1 constraints
	(c) $n+1$ constraints	(d) <i>n</i> ² constraints.
(ii)	Minimize Z =	
	(a) – Maximize(<i>Z</i>)	(b) Maximize (<i>z</i>)
	(c) Maximize $(-Z)$	(d) –Minimize ($-Z$).
(iii)	Matrix minima method is used for so	olving
	(a) assignment problem	(b) NLPP
	(c) transportation problem	(d) game theory.
(iv)	The solution $(0, \frac{1}{2}, 0, 0)$ of the system	m of equations
	$2x_1 + 6x_2 + 2x_3 + x_4 = 3, 6x_1 + 4x_3$	$x_2 + 4x_3 + 6x_4 = 2$ is:
	(a) non-degenerate	(b) degenerate
	(c) not feasible	(d) non-basic.
(v)	The optimality condition for a maxin	nization type LPP is
	(a) $z_j - c_j \ge 0$	(b) $z_j - c_j \le 0$
	(c) $z_j - c_j < 0$	(d) $z_j - c_j = 1$.

M.TECH/CSE/ECE/VLSI/3RD SEM/MATH 6121/2020(vi)The value of a for which the following pay-off matrix is strictly determinable

PLAYER A
$$\begin{array}{|c|c|c|c|} \hline PLAYER B \\ \hline PLAYER A & \hline a & b & b \\ \hline \hline a & b & c & c \\ \hline \hline a & c & b \\ \hline \hline c & c & c \\ \hline c & c & c & c \\ \hline c$$

(x) Which of the following Hessian matrix belongs to a convex function?

$(a)\begin{bmatrix}2&1\\0&-1\end{bmatrix}$	(b) $\begin{bmatrix} 0\\1 \end{bmatrix}$	2 -1
$(c)\begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}$	(d) $\begin{bmatrix} 2\\1 \end{bmatrix}$	1 2].

Group – B

2. (a) Solve the following linear programming problem by graphical method: Maximize $z = x_1 + x_2$

Subject to the constraints

$$x_1 - x_2 \ge 0$$

$$2x_1 - x_2 \le -2$$

$$x_1, x_2 \ge 0$$

(b) Use Simplex method to solve the following linear programming problem:

Maximize $z = 60x_1 + 50x_2$

Subject to

$$x_1 + 2x_2 \le 40$$

 $3x_1 + 2x_2 \le 60$
 $x_1, x_2 \ge 0$

5 + 7 = 12

3. (a) Use the 'Big-M' method to solve the following linear programming problem:

Minimize $z = 4x_1 + 8x_2 + 3x_3$ Subject to $x_1 + x_2 \ge 2$ $2x_1 + x_3 \ge 5$ $x_1, x_2, x_3 \ge 0$ (b) Write the dual of the following LPP: Maximize $z = 2x_1 + 3x_2 - 4x_3$ Subject to $3x_1 + x_2 + x_3 \le 2$ $-4x_1 + 3x_3 \ge 4$ $x_1 - 5x_2 + x_3 = 5$ $x_1, x_2 \ge 0$ x_3 is unrestricted in sign.

MATH 6121

8 + 4 = 12

Group – C

4. (a) Solve the transportation problem by Vogel's approximation method and checking it's optimality, find the optimal solution:

	W ₁	W2	W ₃	W4	Supply
F1	2	2	2	1	3
F ₂	10	8	5	4	7
F ₃	7	6	6	8	5
Demand	4	3	4	4	

(b) Solve by North-West corner rule:

	А	В	С	D	Capacity
Х	9	8	5	7	12
Y	4	6	8	7	14
Z	5	8	9	5	16
Requirement	8	18	13	3	

8 + 4 = 12

5. (a) Write down the following transportation problem into a linear programming problem form:

	D ₁	D ₂	ai
O ₁	4	3	7
O2	5	5	9
bj	10	6	

(b) Find the assignment of machinists I to IV to jobs A to E in the following matrix that will result in a maximum profit:

	Α	В	С	D	E
I	6.20	7.80	5.00	10.10	8.20
II	7.10	8.40	6.10	7.30	5.90
III	8.70	9.20	11.10	7.10	8.10
IV	4.80	6.40	8.70	7.70	8.00

5 + 7 = 12

Group – D

6. (a) Use graphical method to solve the following game and find the value of the game:

	Player B					
Player A	1	3	-3	7		
	2	5	4	-6		

(b) Use dominance to reduce the following pay-off matrix to a 2×2 game and hence find the optimal strategies and the value of the game:

	Player B							
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Player A	A_1	3	2	4	0			
	A_2	3	4	2	4			
	A_3	4	2	4	0			
	A_4	0	4	0	8			

6 + 6 = 12

7. (a) Use algebraic method to solve the following game:

	Player B		
	1	-1	-1
Player A	-1	-1	3
	-1	2	-1

(b) In a rectangular game, the pay-off matrix is given by:

	Player B					
Player A	10	5	5	20	4	
	11	15	10	17	25	
	7	12	8	9	8	
	5	13	9	10	5	

Find the optimal strategies and the value of the game.

8 + 4 = 12

Group – E

- 8. (a) Find the nature of the function $f(x) = x^4 + 6x^2 + 12x$.
 - (b) Solve the following non-linear programming problem using Lagrange multiplier method:

Optimize $z=4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$

Subject to

$$x_1 + x_2 + x_3 = 15$$

$$2x_1 - x_2 + 2x_3 = 20$$

$$x_1, x_2, x_3 \ge 0$$

3 + 9 = 12

9. Use the Kuhn-Tucker conditions to solve the following non-linear programming problem:

Maximize $z = 3x_1 + x_2$

Subject to

 $x_1^2 + x_2^2 \le 5$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

12

Department &	Submission Link
Section	
CSE	https://classroom.google.com/c/MTE5MDg0NjAyODU3/a/Mjc0MDU1ODM5NTIz/details
ECE	https://classroom.google.com/c/MTE5MDg0NjAyODU3/a/Mjc0MDU1ODM5NTIz/details
VLSI	https://classroom.google.com/c/MTE5MDg0NjAyODU3/a/Mjc0MDU1ODM5NTIz/details