B.TECH/IT/5TH SEM/INFO 3133/2020

COMPILER DESIGN (INFO 3133)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

		(Multiple Choice Type	e C	2uestions)	
۱.	Choose the correct alternative for the following:				10 × 1 = 10
	(i)	The grammar $S \rightarrow aSa \mid bS \mid c$ is (a) LL(1) but not LR(1) (c) Both LL(1)and LR(1)		(b) LR(1)but not LR(1) (d) Neither LL(1)nor Ll	
	(ii)	The number of tokens in the following C printf("i=%d, &i=%x", i, &i); (a) 3 (b) 21 (c)		atement 26 (d) 18.	
	(iii)	A bottom up parser generates (a) right most derivation (c) left most derivation		(b) right most derivation (d) left most derivation	
	(iv)	Given below are the regular expressions (i) (a/b)* (ii) (a*b*)* (iii) (ab)* which of them are equivalent? (a) (i) only (c) (i), (ii) and (iii) only	((b) (i) and (ii) only (d) (ii) and (iii) only.	
	(v)	Which of the following is the most power (a) SLR (c) Operator Precedence	(ıl parser? (b) Canonical LR (d) LALR	
	(vi)	Consider the following grammar $S \to FR$ $R \to S \mid \varepsilon$ $F \to id$ In the predictive parser table, M, of the gramma (a) $\{S \to FR\}$ and $\{R \to \varepsilon\}$ (c) $\{S \to FR\}$ and $\{R \to *S\}$	(the entries M[S, id] and M[(b) {S \rightarrow FR} and { } (d) {F \rightarrow id} and {R \rightarrow ϵ	

B.T

ECH/I	T/5 TH SEM/INFO 3133/2020	
(vii)	An intermediate code form is (a) Postfix notation (c) Three address code	(b) Syntax trees (d) All of these
(viii)	If a NFA has n states then the maximum can have (a) n (c) 2 ⁿ	number of states the equivalent DFA (b) n ² (d) none of these.
(ix)	The lexical analyzer takesas input and (a) Source program, tokens (c) Either A and B	produces a stream ofas output. (b) Token, source program (d) None of the above.
(x)	A pictorial representation of the value co block is (a) Tree (c) Graph	mputed by each statement in the basic (b) DAG (d) All of these.

Group - B

- 2. Define assembler and cross compiler. (a)
 - Write the differences between analysis and synthesis phase of compiler. (b)
 - What is regular definition? Write regular definition for the tokens if, then, else, (c) relop and identifier.

$$(2+2)+2+(1+5)=12$$

- 3. Define Deterministic Finite Automata (DFA) and Non-deterministic Finite (a) Automata (NFA). Write a Regular Expression (RE) for the set of strings whose 2nd bit from right end is 1 and 4th bit from right end is 0 and design its corresponding DFA.
 - (b) Define different types of Lexemes with example.

$$(2+2+2+3)+3=12$$

Group - C

Construct an LL(1) parsing table for the following Grammar: 4.

S→aBDh

 $B \rightarrow cC$

 $C \rightarrow bC | \epsilon$

D→EF

 $E \rightarrow g | \epsilon$

 $F \rightarrow f | \epsilon$

12

B.TECH/IT/5TH SEM/INFO 3133/2020

- 5. (a) Identify the token stream for the following statement that will be the o/p of the lexical analyzer. Based on the token stream draw a parse tree. while(M>N && M<= 2*N-5) do M:=M+N;
 - (b) Consider the following grammar, $G=(\{S,B\}, \{a,b,c,d\}, \{S\rightarrow cAd, A\rightarrow b|a\}, S)$, Show the steps of action taken by Predictive Parser Program(PPP) for the sentence, w=cad, The predictive parsing table is given bellow:

	a	b	С	d	\$
S			S→cAd		
Α	A→a	A→b			

(2+4)+6=12

Group - D

6. Consider the following code fragment, convert it to 3-address code then represent the 3-address code in Quadruples, Triples and indirect Triples:

```
x:=y+z+k;
x:=1
  if x<10 then
    x:=y+z-k;
  else
x:= y*z*k;
```

(3+3+3+3)=12

7. What do you mean by code optimization? Consider the productions and its corresponding semantic rules in the following table, derive the sentence $7*9+3_n$ (n for new line) then draw the corresponding annotated parse tree.

	production	Semantic rules
1	L→En	Print(E.val)
2	E→E+T	E.val= E.val+ T.val
3	E→T	E.val= T.val
4	T→T*F	T.val= T.val* F.val
5	T→F	T.val=F.val
6	$F \rightarrow (E)$	F.val=E.val
7	F →digit	F.val=digit.lexval

(2 + 4 + 6) = 12

Group - E

3

- 8. (a) Draw DAG then optimize for the following code fragment:
 - 1. P1:=4*I
 - 2. P2:=addr(A)-4
 - 3. P3:=P2[P1]
 - 4. P4:=4*I
 - 5. Addr(B)-4

B.TECH/IT/5TH SEM/INFO 3133/2020

- 6. P6:= P5[P4]
- 7. P7:= P3*P6
- 8. P8:=PROD + P7
- 9. PROD:=P8
- 10. P9:=I+1
- 11. I:=P9
- 12. if I<=20 goto (1)
- (b) Explain Loop Unrolling with example?

$$(6 + 3) + 3 = 12$$

- 9. Write Short Note (any three)
 - (i) Yacc
 - (ii) Peephole optimization
 - (iii) Lex
 - (iv) Reducible flow graph
 - (v) Uniform Symbol Table.

$$(4 + 4 + 4) = 12$$

Department & Section	Submission Link	
IT	https://classroom.google.com/c/MjQyMTE4NjcwNjM2/a/Mjc0NjY1MjkxNDI5/details	