CONTROL SYSTEM (ELEC 3103)

Time Allotted : 3 hrs

Full Marks : 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) The transfer function of a system is $G(s) = \frac{K}{s^2(s+2s^2)}$. The type and order of the system are (a) 4 and 3 (b) 4 and 2 (c) 2 and 4 (d) 3 and 4.
 - (ii) The output of a linear system for unit step input is given by $e^{-t}\cos(t)$. The transfer function is given by
 - (a) $\frac{s}{(s+1)^2+1}$ (b) $\frac{s(s+1)}{s^2+2s+2}$ (c) $\frac{s+1}{s^2+2s+2}$ (d) $\frac{s}{(s+1)^2+2}$.
 - (iii) A system has dual pole at origin. Its impulse response will be
 (a) constant amplitude
 (b) ramp
 (c) decaying exponential
 (d) oscillatory.

(iv) Consider a unity feedback control system with open-loop transfer function $G(s)H(s) = \frac{K(s+1)}{s(s+2)(s+3)}$. The steady state error of the system due to a unit step input is (a) 0 (b) infinite (c) K/6 (d) 6/K.

(b)1

- (v) The radius of Nyquist contour is(a) 25
 - (c) 0 (d) ∞.

LCH/ LE/ J ··· JEIVI/ ELEC 3 103/ 2020		
(vi)	For a system having a transfer fur asymptotes will be	faction $G(s) = \frac{K}{s(s^2+6s+10)}$ the angle of
	(a) 60°, 180°, 120°	(b) 60°, 180°, 300°
	(c) 60°, 180°, 200°	(d) 60°, 150°, 300°.
(vii)	If the phase margin of a unity feedback plot of the system passes through (a) the origin in GH plane (b) left hand side of (-1, <i>j</i> 0) point in the G (c) exactly on (-1, <i>j</i> 0) point in the GH plan (d) in between origin and (-1, <i>j</i> 0) point in	control system is zero, then the Nyquist H plane ne i the GH plane.
(viii)	A system having a transfer function $G(s)$	$=\frac{(1+2s)}{1+2s}$ is a
(111)		$(1+40s)^{13}$
	(a) lag compensator	(b lead compensator
	(c) lag-lead compensator	(d) lead-lag compensator.
(ix)	By the use of PI control to a second order (a) increases (c) remains unaltered	r system the steady state error (b) decreases (d) can't be determined
(x)	If a system is described by, $A = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ then the roots of the
	characteristics equations are	
	(a) $s = -1$ and $s = -4$	(b) $s = -1$ and $s = -5$
	(c) $s = -4$ and $s = -5$	(d) $s = 0$ and $s = -1$.

Group – B

2. Find the transfer function of the system shown in Fig. (1) using block diagram reduction techniques. Apply Mason's gain formula to verify the result. Consider R as input and C as output of the system.

6 + 6 = 12

 $(4 \times 3) = 12$

- 3. Write short notes on **any three** of the followings:
 - (i) Potentiometer
 - (ii) Synchro
 - (iii) Tacho generator
 - (iv) Gyroscope

ELEC 3103

Group – C

4. (a) Determine the value of 'K' and 'a' such that the system has a damping ratio of 0.8 and an undamped natural frequency of 4 rad/sec for the system shown in Fig.(4a). Hence find out the peak time of the system.

- (b) State Routh Stability Criterion. The open loop transfer function of a negative unity feedback control system is given by $G(s)H(s) = \frac{K}{s(s^2+8s+32)}$. Determine (i) the range of K (K>0) for which the system is stable, (ii) the value of K for which system is marginally stable, (iii) frequency of sustained oscillation. (2 + 2 + 1) + (2 + 5) = 12
- 5. (a) What do you mean by the term 'angle of departure' and 'angle of arrival?
 - (b) Sketch the complete root locus of the system whose open loop transfer function is given by

$$G(s) = \frac{K}{s(s+2)(s^2+6s+25)}.$$
2 + 10 = 12

Group – D

- 6. (a) What is principle of argument?
 - (b) The open loop transfer of a unity negative feedback system is $G(s)H(s) = \frac{240}{s(s+4)(s+6)}$. Draw the Nyquist diagram and comment on stability of the closed loop system.

2 + 10 = 12

7. The open loop transfer of a unity negative feedback system is $G(s)H(s) = \frac{100}{s(s+2)(s+10)}$. Draw the Bode plot. Hence find gain margin, phase margin, gain cross over and phase cross over frequency of the system. Comment on stability of the system.

7 + 4 + 1 = 12

Group – E

8. (a) What is lead compensator? Obtain the transfer function of a lead compensator and draw its pole-zero diagrams.

(b) Find the observable canonical form of the system whose transfer function is

$$G(s) = \frac{s^3 + 2s^2 + 4s + 1}{s^4 + 4s^3 + 6s^2 + 8s + 4}$$

6+6=12

9. (a) Consider a system having state and output equations as follows.

$$\dot{X} = \begin{bmatrix} -4 & 2 & 0 \\ 0 & -4 & 1 \\ 0 & 0 & -1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} X$$

Check whether the system is completely state observable or not.

(b) A system is described by,

$$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X$$
Using state feedback control, place the pole of the close loop system

Using state feedback control, place the pole of the close loop system to a desired locations $s = -2 \pm j4$ and s = -10. Determine the state feedback gain matrix. 5 + 7 = 12

Department & Section	Submission Link
EE	https://classroom.google.com/c/MTIxOTAzMDMzNDIx/a/MjcxNTM4ODQ5Njgx/details