B.TECH/IT/3RD SEM/INFO 2111/2020

INFORMATION THEORY & CODING (INFO 2111)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) The capacity of a binary symmetric channel, given H(P) is binary entropy function is:
 (a) 1 H(P)
 (b) H(P) 1
 (c) 1 H(P)²
 (d) H(P)² 1
 - (ii) For the generation of a cyclic code, the generator polynomial should be the factor of _____ (a) $x^n + 1$ (b) $x^n 1$ (c) $x^n / 2$ (d) $x^{2n/3}$
 - (iii) In a linear code, the minimum Hamming distance between any two code words is _____minimum weight of any non-zero code word.
 (a) less than
 (b) greater than
 (c) equal to
 (d) not equal
 - (iv) If the channel bandwidth is 6 kHz & signal to noise ratio is 16, what would be the capacity of the channel?
 (a) 15.15 kbps
 (b) 24.74 kbps
 (c) 30.12 kbps
 (d) 52.18 kbps
 - (v) Which among the below stated logical circuits are present in encoder and decoder used for the implementation of cyclic codes?
 A. Shift Registers
 B. Modulo-2 Adders
 C. Counters
 D. Multiplexers
 (a) A & B
 (b) C & D
 - (c) A & C (d) B & D

1

 $10 \times 1 = 10$

Full Marks: 70

B.TECH/IT/3RD SEM/INFO 2111/2020

(vi)	In Repetition Code, how many information bit/s is/are present in addition to n-1 parity bit			
	(a) One	(b) Two	(c) Four	(d) Eight

- (vii) For BCH code if the received vector and the computed vector are r(x) and e(x) respectively, then the error free code vector is_____.
 (a) r(x) *e(x)
 (b) r(x)/e(x)
 (c) r(x) + e(x)
 (d) None of these.
- (viii) For GF (23) the elements in the set are:
 (a) { 1, 2, 3, 4, 5, 6, 7 }
 (b) { 0,1, 2, 3, 4, 5, 6 }
 (c) { 0, 1, 2, 3 }
 (d) { 0, 1, 2, 3, 4, 5, 6, 7 }
- (ix) The syndrome polynomial in a cyclic code solely depends on_____.
 (a) generator polynomial
 (b) parity polynomial
 (c) error polynomial
 (d) code word
- (x) Which is not a field element of the polynomial, $p(x) = x^5 + x^2 + 1$ in GF (2⁶)? (a) $\alpha^3 + \alpha$ (b) $\alpha^4 + \alpha^2$ (c) $\alpha^4 + 1$ (d) $\alpha^3 + \alpha + 1$

Group – B

2. Consider that two sources S1 and S2 emit message x1, x2, x3 and y1, y2, y3 with joint probability P(X, Y) as shown in the matrix form.

$$P(X,Y) = \begin{pmatrix} \frac{3}{40} & \frac{1}{40} & \frac{1}{40} \\ \frac{1}{20} & \frac{3}{20} & \frac{1}{20} \\ \frac{1}{8} & \frac{1}{8} & \frac{3}{8} \end{pmatrix}$$

Calculate the entropies H(X), H(Y), H(X, Y), H(X/Y), H (Y/X) and I(X; Y).

 $(6 \times 2) = 12$

3. A discrete memory less source X has seven symbols x_1 , x_2 , x_3 , x_4 , x_5 , x_6 and x_7 with probabilities $p(x_1) = 0.125$, $p(x_2) = 0.0625$, $p(x_3) = 0.25$, $p(x_4) = 0.0625$, $p(x_5) = 0.125$, $p(x_6) = 0.125$ and $p(x_7) = 0.25$. Find the codeword for X using Huffman encoding, and calculate the efficiency of the code.

12

Group – C

4. For (7, 4) Hamming code, H is given below:

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & \vdots & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & \vdots & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & \vdots & 0 & 0 & 1 \end{bmatrix}$$

- i. Find the generator matrix.
- ii. Find all the code vectors.

INFO 2111

B.TECH/IT/3RD SEM/INFO 2111/2020

- iii. Draw the encoder circuit.
- iv. What is the d_{min} between the code vectors?
- v. How many errors can be detected? How many errors can be corrected?
- vi. Calculate syndrome vector for single bit errors.

 $(6 \times 2) = 12$

- 5. (a) Determine the encoded message for data message 100110111001 using CRC generator polynomial $g(x) = x^4 + x^2 + 1$.
 - (b) Prove that:
 - (i) CH^T = 0 where C is a valid code word and H is the parity check matrix.
 - (ii) Syndrome is independent of the codeword.

 $6 + (2 \times 3) = 12$

Group – D

- 6. (a) Find the Minimal Polynomial for the field element α^5 in GF (2³). Use the primitive polynomial $p(x) = x^3 + x + 1$ to construct GF (2³).
 - (b) A codeword c(x) of the (15, 5) triple error correcting BCH code incurs errors so as to give $v(x) = x^{13} + x^{10} + x^8 + x^4 + x + 1$. Find the error location polynomial using Reed Solomon Code.

5 + 7 = 12

- 7. (a) Find the generator polynomial g(x) for a single error correcting binary BCH code of block length 15 over GF (16). Use primitive polynomial $p(x) = x^4+x+1$.
 - (b) Find (a) $\alpha^7 + \alpha^{11} + \alpha^9$ (b) $\alpha^5 + \alpha^8 + \alpha^{13}$ (c) $\alpha^{11} + \alpha^3 + \alpha$ in GF(2⁴).

6 + 6 = 12

Group – E

8. A rate 1/3 convolutional coder with constraint length of 3 uses the generating vectors: g_i¹ = {1,0,0}, g_i² = {1,1,1} and g_i³ = {1,0,1}.
i. Draw the code tree, state diagram and Trellis diagram.
ii. Encode the message m= {10110} using code tree.

(6+2+2)+2=12

9. A rate 1/3 convolutional coder with constraint length of 3 uses the generating vectors $g_i^1 = \{1, 0, 0\}, g_i^2 = \{1, 0, 1\}$ and $g_i^3 = \{1, 1, 1\}$.

- i. Draw the encoder circuit.
- ii. Draw the state diagram for the coder.
- iii. Determine the d_{free} of the coder.

(2 + 4 + 6) = 12

Department & Section	Submission Link		
IT	https://classroom.google.com/c/MTI1OTk2ODMyMDcz/a/Mjc0NTQ2MTAzMjgw/details		