RF IC DESIGN AND MEMS (VLSI 6132)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Full Marks: 70

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					$10 \times 1 = 10$
	(i)	SFDR is the spec (a) DAC	ification for (b) ADC	(c) Both DAC & ADC		(d) All RFIC.
	(ii)	The <i>S</i> -parameter (a) gain (c) Input matchin	r (<i>S₂₂</i>) characterizes ng of the two-port n	etwork	(b) reverse isol (d) output mate	ation ching.
	(iii)	 i) Due to skin effect, the resistance of a trace will (a) decrease (b) increase (c) remain unchanged (d) none of the a 				
	(iv)	The stern stabilit (a) $K = \frac{1 + \Delta ^2 - S_{11} ^2 - S_{21} S_{12} }{2 S_{21} S_{12} }$ (c) $K = \frac{1 + \Delta ^2 - S_{21} ^2 - S_{21} ^2 - S_{22} ^2}{2 S_{11} S_{22} }$	ty factor for LNA is $\left \frac{- S_{22} ^2}{- S_{12} ^2}\right $	defined as (b) (d)	$K = \frac{1 + \Delta ^{2} + S_{11} ^{2} + S_{22} ^{2}}{2 S_{21} S_{12} }$ $K = \frac{1 + \Delta ^{2} + S_{21} ^{2} + S_{11} ^{2}}{2 S_{11} S_{22} }$	$\frac{2}{2} \Big ^2$ $\frac{12}{2} \Big ^2$
	(v)	Port-to-port feed (a) gate-source of (c) both (a) & (b)	d through in mixer is capacitance)	s created (b) (d)	by gate-drain capa none of the abov	citance ve.
	(vi)	Shannon's theorem states that the achievable data rate of a communication channis equal to				

(a) $2B \log_2(1 + SNR)$ (b) $B \log_2(1 + SNR)$ (c) $(B/2) \log_2(1 + SNR)$ (d) $B \log_2(1 + 2SNR)$ where, *B* denotes bandwidth and *SNR* the signal-to-noise ratio.

(vii) The "image" frequency of a desired signal is given by

(a)
$$\omega_{im} = \omega_{in} + 2\omega_{IF}$$
(b) $\omega_{im} = \omega_{in} - 2\omega_{IF}$ (c) $\omega_{im} = 2\omega_{in} + \omega_{IF}$ (d) $\omega_{im} = 2\omega_{in} - \omega_{IF}$

(viii) Anodic bonding of a silicon/gas substrate takes place under
(a) high temperature
(b) high pressure
(c) high temperature & pressure
(d) high temperature & high electric voltage.

M.TECH/VLSI/3RD SEM/VLSI 6132/2022

- (ix) The term LIGA refers to
 - (a) design
 - (c) microfabrication process
- SOI stands for (X)
 - (a) splitting of ions
 - (c) substrate on insulator

- (b) material
- (d) none of these.

(b) silicon on insulator

(d) silicon orientation index.

Group-B

- Explain the principle of operation of varactors. 2. (a)
 - [(CO6)(Understand /LOCQ)] An analog multiplier "mixes" its two inputs $x_1(t) = A_1 \cos \omega_1 t$ and $x_2(t) = A_2 \cos \omega_2(t)$ (b) and ideally produces $y(t) = kx_1(t)x_2(t)$, where k is a constant. If the mixer is ideal, determine the output frequency components. If the input port sensing $x_2(t)$ suffers from third-order nonlinearity, determine the output frequency components.
 - We wish to employ a capacitive coupling (C) at the input of a stage (Fig. 1) that as an input capacitance of C_{in} . Determine the additional input capacitance resulting from the coupling capacitor. Assume, C_p = [(CO6)(Evaluate/HOCQ)]] $0.1C_{c}$

3. (a) Explain "current crowding" effect in spiral inductor geometry.

[(CO6)(Understand/LOCQ)]

- effect parasitic (b) Estimate the of the substrate capacitance and to interwinding capacitance of a spiral inductor with mathematical modelling. [(CO6)(Apply/IOCQ)]
- Determine the noise figure of the cascade (C) of common-source stages shown in Fig. 2. Neglect the transistor capacitances and flicker noise. [(CO1)(Evaluate/HOCQ)]

4 + 5 + 3 = 12

Group – C

- (a) Explain the principle of operation of dual down conversion heterodyne receiver. 4. [(CO2)(Understand/LOCQ)]
 - Down conversion to what minimum intermediate frequency avoids self-corruption of (b) asymmetric signals? [(CO2)(Analyze/IOCQ)]
 - A student decides to omit a pre-driver and simply "scale-up" the up-converter so that (C) it can drive the power amplifier directly. Justify the drawback of this approach.

2

- [(CO6)(Evaluate/HOCQ)]
 - 4 + 5 + 3 = 12

M.TECH/VLSI/3RD SEM/VLSI 6132/2022

- Briefly discuss the noise and linearity issues of a mixer in a transceiver. 5. (a)
 - Derive the expression of voltage gain, output (b) impedance and noise figure of the commonsource stage with resistive feedback LNA topology. [(CO3)(Analyze/IOCQ)]
 - Determine the noise figure of the stage (C) (Fig. 3) with respect to a source impedance of R_S . Neglect channel-length modulation [(CO3)(Evaluate/HOCQ)] and body effect.

Group - D

Discuss the steps of Bulk Micromachining with proper diagrammatic illustrations. 6. (a)

[(CO4)(Understand/LOCQ)] Discuss in detail how the CVD process can be utilized during the fabrication of

[(CO5)(Understand/LOCQ)]

6 + 6 = 12

- Compute the Miller indices of a plane which has intercepts of (3,5,6) in the (a,b,c) 7. (a) crystallographic axes respectively. [(CO4)(Apply/IOCQ)] Illustrate on: (i) Isotropic etching (ii) MEMS pressure sensor. [(CO4)(Apply/IOCQ)] (b) [(CO4)(Analyse/IOCQ)]
 - Classify the different processes of actuation. (C)

2 + 6 + 4 = 12

Group - E

- Describe the working principle and structure of a piezoresistive pressure sensor. 8. (a) [(CO6)(Analyze/IOCQ)] Explain micromechanical resonators. Review the alterations that can be made in the (b) MEMS resonator to increase its resonant frequency. [(CO4)(Analyze/IOCQ)] 6 + (3 + 3) = 12
- Realize the steps of realizing cantilever structure by surface micromachining process. 9. (a) [(CO5)(Remember/LOCQ)]
 - (b) Draw a neat diagram of a surface micro-machined variable capacitor. Explain its working principle. [(CO6)(Apply/IOCQ)]

3

What are the desirable properties in an rf micromechanical switch? (C)

> [(CO6)(Analyze/IOCQ)] 4 + (3 + 3) + 2 = 12

(b)

Microsystems.

M.TECH/VLSI/3RD SEM/VLSI 6132/2022

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33	54.17	12.50

Course Outcome (CO):

After the completion of the course students will be able to

- Specify noise and interference performance metrics like noise figure, IIP3 and different matching criteria.
- Comprehend different multiple access techniques, wireless standards and various transceiver architectures.
- 3. Design various constituents' blocks of RF receiver front end.
- 4. Describe MEMS fabrication technologies.
- 5. Critically analyze micro-systems technology for technical feasibility as well as practicality.
- Comprehend the working of various systems and design electronic circuits for various applications.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

4

VLSI 6132