DESIGN AND TECHNOLOGY FOR PHOTONIC INTEGRATED CIRCUIT (ECEN 6125)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) The Lorentz oscillator model is applicable for
 - (a) Dielectric
- (b) Metals
- (c) Semiconductors (d) All of the above.

- The Drude model (ii)
 - (a) is applicable for metals
 - (b) is a special case of Lorentz oscillator model
 - (c) includes mean-free-time between two successive collisions
 - (d) is attributed to all of the above.
- (iii) The imaginary part of the complex permittivity is
 - (a) responsible for polarization of charges
 - (b) responsible for power loss
 - (c) responsible for determining the speed of wave in a medium
 - (d) none of them.
- (iv) The Drude conductivity is expressed as (a) $\sigma(\omega) = \frac{\sigma_0}{1 + \frac{\omega^2}{\tau^2}}$ (b) $\sigma(\omega) = \frac{\sigma_0 \omega}{1 + \frac{\omega^2}{\tau^2}}$ (c) $\sigma(\omega) = \frac{\sigma_0}{1 + \omega^2 \tau^2}$ (d) $\sigma(\omega) = \frac{\sigma_0 \omega}{1 + \omega^2 \tau^2}$.

(a)
$$\sigma(\omega) = \frac{\sigma_0}{1 + \frac{\omega^2}{\tau^2}}$$

(b)
$$\sigma(\omega) = \frac{\sigma_0 \omega}{1 + \frac{\omega^2}{\tau^2}}$$

(c)
$$\sigma(\omega) = \frac{\sigma_0}{1 + \omega^2 \tau^2}$$

(d)
$$\sigma(\omega) = \frac{\sigma_0 \omega}{1 + \omega^2 \tau^2}$$
.

The fundamental mode of a slab waveguide having refractive index n_1 is excited by a (v) monochromatic light. If the light incidents from a medium of propagation constant β , the wavenumber, κ , of the core is expressed as

(a)
$$\kappa = \sqrt{\beta^2 - k^2 n_1^2}$$

(b)
$$\kappa = \sqrt{k^2 n_1^2 - \beta^2}$$

$$(c) \kappa = \sqrt{\beta^2 - \frac{k^2}{n_1^2}}$$

(d)
$$\kappa = \sqrt{\frac{k^2}{n_1^2} - \beta^2}$$

Based on the effective-index method the wavenumber of the core (refractive index (vi) n_c) of a waveguide is expressed as

1

(a)
$$\kappa = k \sqrt{n_c^2 - n_{eff}^2}$$

(b)
$$\kappa = k \sqrt{n_{eff}^2 - n_c^2}$$

(c)
$$\kappa = k \sqrt{n_c^2 + n_{eff}^2}$$

(d)
$$\kappa = k \sqrt{n_{eff}^2 + n_c^2}$$

M.TECH/ECE/VLSI/3RD SEM/ECEN 6125/2022

- (vii) For a pure dielectric materials the following model is applicable
 - (a) Lorentz oscillator model

(b) Drude model

(c) Kramers-Kroning model

(d) all of the above.

- (viii) Power loss in a metal is due to
 - (a) real part of the complex permittivity
 - (b) imaginary part of the complex permittivity
 - (c) ordinary refractive index
 - (d) none of them.
- (ix) The measurement of refractive index is done using
 - (a) a Febri-Perot interferometer
- (b) Mach-Zehnder interferometer

(c) Any interferometer

- (d) None of them
- According to the Bragg's condition which one is correct?

(a)
$$d = (n + \frac{1}{2})\frac{\lambda}{2}$$
 (b) $d = n \lambda$ (c) $d = n\frac{\lambda}{4}$ (d) $d = n\frac{\lambda}{2}$.

(b)
$$d = n \lambda$$

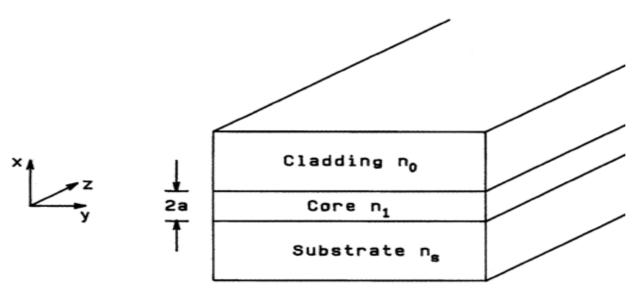
(c)
$$d = n \frac{\lambda}{4}$$

(d)
$$d = n \frac{\lambda}{2}$$

Group - B

- 2. (a) Recalling Lorentz-Oscillator model show that the electric susceptibility of the dielectric material can be expressed as $\chi_e(\omega) = \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\omega\Gamma}$, where ω_p is plasma [(CO1)(Remember/LOCQ)] frequency.
 - (b) Show that the imaginary and real parts of a real system are interdependent.

[(CO1)(Understand/LOCQ)]


6 + 6 = 12

- 3. (a) Using the Kramers-Kroning relation evaluate the attenuation constant for a material of ordinary refractive index $n_0 = 2\left(\frac{\omega+a}{\omega_1}\right)$ for $1 \le \omega \le \omega_1$, where a is an arbitrary [(CO1)(Apply/IOCQ)] constant.
 - What is a uniaxial crystal? What are the main differences between an isotropic crystal and anisotropic crystal? [(CO1)(Apply/IOCQ)]

6 + 6 = 12

Group - C

4. (a) Find the electric and magnetic field of TE mode for the slab wave guide shown below. Derive and sketch for possible solutions of propagation constant.

[(CO2)(Analyze/IOCQ)]

M.TECH/ECE/VLSI/3RD SEM/ECEN 6125/2022

(b) Using the field equations calculated already, determine the total power carried through all the layers of the guide. [(CO2)(Analyze/IOCQ)]

6 + 6 = 12

- 5. (a) Design a rectangular waveguide and find the dispersion relation for E_{pq}^x mode of a rectangular waveguide and draw E_{12}^x and E_{21}^x modes. [(CO3)(Create/IOCQ)]
 - (b) Consider for a rectangular waveguide, the refractive indices of the core and cladding are 2 and 4, respectively. If $\gamma_x = 4k_x$, $\gamma_y = \frac{\pi}{6}k_y$ and dimensions along the x and y are 2 and 4 micro-meter, respectively, determine the propagation constant β for a light of wavelength $\lambda = 1.5 \ \mu m$. [(CO3)(Apply/IOCQ)]

6 + 6 = 12

Group - D

- 6. (a) If two waveguides are placed in close proximity, how energy transfer from one guide into the other takes place. [(CO3)(Remember/LOCQ)]
 - (b) The coupled modes of a coupler are given as $\frac{dA}{dz} = -j\kappa B e^{-j\Delta\beta z}$ and $\frac{dB}{dz} = -j\kappa^* A e^{+j\Delta\beta z}$, where $\Delta\beta = \beta_1 \beta_2$. Based on the statement judge what type of coupler it is. Find an expression of A for a coupler of length L. Assume $A(0) = A_0$ and B(L) = 0.

[(CO3)(Evaluate/HOCQ)]

6 + 6 = 12

- 7. (a) Describe the operation of Fabry-Perot interferometer? [(CO1)(Remember/IOCQ)]
 - (b) Design an anti reflection coating by sandwiching a material of refractive index n_2 between two other materials of refractive index n_1 and n_3 . [(CO3)(Evaluate/IOCQ)]
 - (c) Consider two partially transmitting mirrors, separated by a homogeneous medium of width d, are placed in front of a monochromatic light source. Find an expression of the transmitted amplitude from the second mirror. [(CO1)(Analyze/IOCQ)]

4 + 4 + 4 = 12

Group - E

- 8. (a) Find the expression for transmission from a periodic structure that satisfies the Bragg's condition. [(CO4)(Evaluate/IOCQ)]
 - (b) Design a periodic structure in such a way that the reflected waves from each period will interfere constructively. What will be the relation between the wavelength and period to achieve it? Assume a monochromatic wavelength. [(CO3)(Evaluate/IOCQ)]

6 + 6 = 12

- 9. Explain the following phenomena for photonic crystals:
 - (i) Origin of photonic band-gap.
 - (ii) Left hand propagation.
 - (iii) Self collimation.

[(CO4)(Remember/LOCQ)]

(4+4+4)=12

ECEN 6125 3

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	31.25	62.50	6.25

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Students will be able to solve problems associated with wave propagation through anisotropic mediums.
- 2. Students will be able to design different components such as planar and rectangular waveguides, bends, Y- section, couplers, filters etc.
- 3. Students will be able to design coupled waveguides and resonators.
- 4. Students will be able to design photonic band-gap devices.
- 5. Students will understand the fabrication process for different optical devices.
- 6. Students will be able to characterize the basic photonic components using simple python coding.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

ECEN 6125 4