M.TECH/BT/1st SEM/BIOT 5142/2022

ADVANCED ENVIRONMENTAL BIOTECHNOLOGY (BIOT 5142)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) To regenerate a cation resin it should be washed with (a) HCl (b) NaCl (c) NaOH (d) Any of the above.
 - Nitrosomonas bacteria converts (ii) (a) NH^{4+} to NO_2^{-} (b) NO_2 to NO_3 (c) NH^{4+} to NO_3^{-} (d) None of the above.
 - (iii) The micro-organism used in bioleaching of several minerals is (a) Acetobacter vinelandii (b) Acidithiobacillus ferrooxidans (c) Aspergillus niger (d) Bacillus subtilis.
 - (iv) Which of the bioremediation process involves plants? (c) Phytoremediation (b) Land filling (a) Composting
 - A diversity index is (\mathbf{v})
 - (a) a mathematical measure of species diversity in a given community
 - (b) based on species richness and abundance
 - (c) measured by Shannon index
 - (d) All the above.
 - (vi) Which one is the major source of chromium is environment? (a) Leather industries (b) Automobile exhausts

Full Marks: 70

 $10 \times 1 = 10$

(d) Incineration.

(c) Paper industry

(d) Fertilizers.

(vii) Which enzyme is inhibited by organophosphorous pesticides? (a) Acetyl choline synthetase (b) Acetyl choline esterase (d) Fattyacyl CoA synthetase. (c) Acetyl choline transferase

1

(viii) Which protein is coded by the gene mer A? (a) Organomercurial lyase (c) Mercury transport proteins

(b) Mercuric reductase (d) Organomercurial synthetase.

BIOT 5142

M.TECH/BT/1st SEM/BIOT 5142/2022

- (ix) Which of the following pairs have techniques of ex situ bioremediation?
 - (a) Bioventing and biopile
 - (c) Bioventing and bispurging

(b) Biopile and windrows(d) Biosprunging and biopile.

- (x) In situ bioremediation involves
 - (a) degradation of pollutants directly by microbes
 - (b) collection of pollutants from the polluted site and then degradation by bacteria
 - (c) degradation of pollutants under laboratory condition
 - (d) degradation of pollutants only by genetically engineered microbes.

Group - B

2. (a) Describe the acute toxicity mechanisms caused by xenobiotics.

```
[(CO1)(Describe/IOCQ)]
```

(b) Mercury is usually disposed as mercuric chloride in environment. However, a large quantity of organomercurials are found in victims of mercury pollution. Correlate the two observations. [(CO1)(Correlate/HOCQ)]

8 + 4 = 12

- 3. (a) Write different forms of arsenic that are found in nature. Which form is the most toxic form? [(CO1)(Remember/LOCQ)]
 - (b) Describe how As(V) is converted to MMA and DMA in our system.

```
[(CO1)(Describe/IOCQ)]
```

(c) Arsenic is the only heavy metal whose source of contamination is natural rather than man made. Justify the statement. [(CO1)(Justify/HOCQ)]

2 + 5 + 5 = 12

Group - C

4. (a) Explain in detail the process employed to remove hardness of drinking water.

[(CO2)(Understand/LOCQ)]

(b) Describe how solid waste is managed by manual composting methods.

```
[(CO2)(Understand/IOCQ)]
6 + 6 = 12
```

5. Experiments at 25°C were performed to determine the permeabilities of a celluloseacetate membrane. The laboratory test section membrane area A = 2.0×10^{-3} m². The inlet

feed solution concentration of NaCl is $C_1 = 10$ kg NaCl/m³ solution (density= 1004 kg solution/m³). The water recovery is assumed low so that the concentration C_1 in the entering feed solution flowing past the membrane and the concentration of the exit feed solution are essentially equal. The product solution contains $C_2 = 0.39$ kg NaCl/m³ solution (density = 997 kg solution/m³) and its measured flowrate is 1.92×10^{-8} m³ solution/s. A pressure differential of 54.42 atm is used. Calculate the permeability constants of the membrane and the solute rejection R (π = 7.48 atm). [(CO2)(Evaluate/HOCQ)] 12

M.TECH/BT/1STSEM/BIOT 5142/2022

Group - D

- 6. (a) What are BTEX compounds? [(CO3)(Remember/LOCQ)]
 (b) Describe the pathways for degradation of alkanes with subterminal hydroxylation. [(CO3)(Understand/IOCQ)]
 (c) Mixed culture works better for degradation of pollutants than a pure culture. Justify the statement. [(CO2)(Justify/HOCQ)]
 2+6+4=12
- 7. (a) Describe biosorption processes by algae and fungi. [(CO3)(Describe/IOCQ)]
 (b) Differentiate between metabolism dependent and metabolism independent biosorption. [(CO3)(Differentiate/HOCQ)]
 (4 + 4) + 4 = 12

Group - E

- 8. (a) Explain biogas production by anaerobic digestion. [(CO6)(Explain/LOCQ)]
 - (b) Enumerate different sources of biomass used to produce energy.

```
[(CO6)(Enumerate/LOCQ)]
```

8 + 4 = 12

9. (a) Work out the value of Simpson's Diversity Index, **D**, for a single quadrat sample of ground vegetation in a woodland from the given data:

Species	Number (n)		
A	81		
В	2		
С	2		
D	2		
Е	1		
Total (N)			

[(CO5)(Analyze/IOCQ)]

(b) Define Shannon's diversity index and Shannon's equitability.

[(CO5)(Remember/LOCQ)]

8 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	39.5	30.20	30.20

Course Outcome (CO):

After completion of the course the students will be able to:

1. Understand the of the cause and effect of environmental pollution in details

2. Explain the conventional processes of waste treatment

M.TECH/BT/1STSEM/BIOT 5142/2022

- 3. Interpret the role of microbes in pollution control
- 4. Develop biotechnological process for waste treatment
- 5. Recognize the importance of biodiversity
- 6. Comprehend the concept of green technology.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.

4

BIOT 5142