M.TECH/AEIE/1ST SEM/AEIE 5102/2022

PROGRAMMING LANGUAGE FOR EMBEDDED IOT SYSTEMS (AEIE 5102)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Cho	ose the correct alter	$10 \times 1 = 10$		
	(i)	The CPU clock frequ (a) 16MHz	ency of the Raspberr (b) 1 kHz	y Pi 3 model B is (c) 1GHz	(d) 3 GHz.
	(ii)	The resolution of the (a) 16bit	e ADC in the Arduino (b) 128bit	UNO is (c) 10bit	(d) 32bit.
	(iii)	d = {0: 'a', 1: 'b', 2: 'c for i in d.keys(): print(i) The output of the co (a) a b c	'} de above is (b) 0 1 2	(c)0a 1b 2c	(d) 2c 1b 0a.
	(iv)	>>> s = 'Hello World >>> s[1] = 'a' The output is seen a (a) Hallo World	l' t console is (b) Hello World	(c) ld	(d) Type Error.
	(v)	Number of digital I/ (a) 8	O in the Arduino boa (b) 18	rd is (c) 13	(d) 9.
	(vi)	The applications for (a) Objective C	Android Things are i (b) Java	mostly written in? (c) Kotlin	(d) Both (b) and (c).

Full Marks: 70

(vii) The MQTT protocol usage format is(a) Publish/Subscribe(c) GET/PUT

(b) GET/POST(d) SEND/POST.

(viii) Identify which of the following best describes IoT systems
(a) An on-line banking
(b) An ATM
(c) A library book reservation system
(d) An AC that reports room temperature over an Android app.

M.TECH/AEIE/1STSEM/AEIE 5102/2022

(ix)	Which protocol is lightweight?					
	(a) MQTT	(b) HTTP	(c) CoAP	(d) SPI.		
(x)	The operator for a <i>to</i>	o <i>the power</i> b is				
	(a) a [^] b	(b) a**b	(c) a ^^ b	(d) a ^ * b.		

Group-B

2. (a) What are the advantages of using a conventional M2M network?

[(CO5) (Remember/LOCQ)]

Contrast on the importance of business analytics in an IoT application. (b) [(CO6) (Analyze/IOCQ)]

Determine the usage details of IaaS cloud service model? [(CO3)(Evaluate/HOCQ)] (C)

```
4 + 5 + 3 = 12
```

[(CO6) (Remember/LOCQ)]

3. (a) What are the inputs to a M2M value chain?

- Elaborate on some network protocols used by M2M solutions. [(CO3) (Create/HOCQ)] (b)
- Identify two application areas where NB-IoT is used over conventional WiFi. (C)

[(CO2) (Apply/IOCQ)]

4 + 3 + 5 = 12

Group – C

Distinguish between MQTT protocol from RESTful API. [(CO5) (Analyze/IOCQ)] 4. (a) [(CO3) (Understand/LOCQ)] What convention is used to define MQTT topics? (b) Create a python function to accept a string. The function should print the same string (C) after omitting the first and last characters. [(CO4)(Create/HOCQ)] 4 + 3 + 5 = 12

- 5. (a) How many message representation formats does RESTful API have? Explain each [(CO5) (Remember/LOCQ)] format in detail.
 - Develop a simple Python code to demonstrate a MQTT subscriber for topic (b) "home/room_0/humidity_1". [(CO2) (Understand/IOCQ)]
 - Create a Python code using the Flask frame work to implement a RESTful API and use (C) it to serve a GET request to return stored data in JSON format. [(CO3)(Create/HOCQ)]

3 + 4 + 5 = 12

Group – D

- (a) Develop a NodeMCU code to read data from DHT-11 and upload it to Consentium 6. [(CO4) (Analyze/IOCQ)] server.
 - What role does void loop() play in an Arduino code? [(CO6) (Understand/LOCQ)] (b)
 - Create a simple MicroPython code to blink an LED at GPIO 25 in a Raspberry Pi Pico. (C) [(CO1)(Create/HOCQ)]
 - 4 + 3 + 5 = 12

M.TECH/AEIE/1ST SEM/AEIE 5102/2022

- What is the minimum program space requirement for MicroPython to run? 7. (a)
 - [(CO4) (Remember/LOCQ)]
 - Develop a simple MicroPython code to print serial data on the console. (b)
 - [(CO2) (Apply/IOCQ)]
 - Design a code to read data temperature and humidity sensor connected the (C) NodeMCU board. [(CO1) (Create/HOCQ)]

2 + 4 + 6 = 12

Group – E

- What is the function of the send and receive API keys in Consentium server? 8. (a) [(CO3) (Remember/LOCQ)] Contrast on the role of HAL in Android Things. [(CO6) (Analyze/IOCQ)] (b) Evaluate the role of network cards in the IoT device stack. [(CO1)(Evaluate/HOCQ)] (C) 4 + 5 + 3 = 12
- Illustrate with a neat diagram the architecture of Android Things. 9. (a)

[(CO4) (Understand/LOCQ)]

- Contrast on the primary Cloud services that have native support for Android Things (b) [(CO2) (Analyze/IOCQ)] based devices?
- Determine the similarities M2M models have with IoT. (C)

4 + 5 + 3 = 12

[(CO1) (Evaluate/HOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	28.16	37.50	34.34

Course Outcome (CO):

After the completion of the course students will be able to:

- 1. Interpret the vision of IoT from a global context.
- 2. Understand the key features, design challenges and related to IoT systems.
- 3. Learn the architecture of NodeMCU and develop IoT systems using it.
- Demonstrate working knowledge of Micro Python. 4.
- Design an IoT system with functional requirements for hardware components including 5. processor, networking components and sensors.
- Develop an IoT system with along with applications of cloud. 6.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.

