B.TECH/CSBS/CSE/CSE(AI&ML)/CSE(DS)/3RD SEM/ECEN 2104/2022

DIGITAL LOGIC (ECEN 2104)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choo	ose the correct a	lternative for the fol	lowing:	$10 \times 1 = 10$
	(i)	The 2's complen (a) 101100	nent representation o (b) 101110	of (-19) ₁₀ is (c) 101101	(d) none of these.
	(ii)	An example of r (a) BCD	eflected code is (b) GRAY	(c) ASCII	(d) Hamming code.
	(iii)	The equivalent l (a) 1111111	oinary number for the (b) 1000000	e gray number 10110 (c) 1101100	10 is (d) 1011101.
	(iv)	The equivalent (a) (52.544) ₈	octal number for the h (b) (62.775) ₈	nexadecimal number (c) (53.670) ₈	(2A.B2) _H is (d) (32.436) ₈ .
	(v)	Simplified form (a) 1	of Boolean expression (b) 0	n $(A + \overline{B} + \overline{A}B)C$ is (c) C	(d) <i>C</i> .
	(vi)	The disabling lo (a) 0 (b	gic for OR gate is) 1	(c) all of the above	(d) none of the above.
	(vii)	A XNOR gate car (a) by setting or (c) by shorting t	n be made to act as NG ne of the Inputs at 0 the Inputs and the Out	OT gate by (b) by setting or tput (d) all of the abo	ne of the Inputs at 1 ove.
	(viii)) In JK flip flop wi	th NAND gates only, f	for CLK = 1, J = 1, K = 0	0, the output is

(a) No change in state	(b) Reset State
(c) Toggle State	(d) Set State.

- (ix) Which logic family has minimum power dissipation?
 (a) RTL
 (b) CMOS
 (c) DTL
 (d) TTL.
- (x) If an asynchronous counter have 3 identical flip-flops with t_{pd} = 50 ns, then what is the total propagation delay and the maximum frequency?
 (a) 150 ns & 6.67 MHz
 (b) 160 ns & 5.67 MHz
 (c) 140 ns & 2.23 MHz
 (d) None of these.

1

B.TECH/CSBS/CSE/CSE(AI&ML)/CSE(DS)/3RD SEM/ECEN 2104/2022

Group - B

2. (a) (i) Represent (5489)₁₀ in Gray code. (ii) Represent (572.61)₈ in common binary code (iii) Realize $Y = \overline{AB} + A + \overline{(B + C)}$ using NAND gates only. [(CO1)(Evaluate/HOCQ)] Simplify the following Boolean function using K-map: (b) $f(A, B, C, D) = \sum m(0, 1, 4, 5, 9, 11, 14, 15) + \sum d(10, 13).$ [(CO1)(Evaluate/HOCQ)] (3+3+3)+3=123. (a) Perform the following conversions (1011.1010)₂ to Decimal (i) (ii) $(77.625)_{10}$ to Octal (iii) (2A.F6)_H to Octal (iv) $(23.46)_8$ to Hexadecimal. [(CO1)(Understand/LOCQ)] State the following :- (i) DeMorgan's Theorem (ii) Distributive Law. (b) [(CO1)(Remember/LOCQ)] Derive the logic expression for the function: (C) Y = F(A, B, C, D) = $\pi_M(0, 3, 6, 9, 12, 15)$ by Tabular Method and draw the corresponding logic circuit. [(CO1)(Apply/IOCQ)] 4 + 2 + 6 = 12

Group - C

4.	(a)	Realize a full subtractor circuit using half subtractor	module and necessary logic
		gates.	[(CO1)(Remember/IOCQ)]
	(b)	Realize a full adder circuit using 4:1 multiplexer.	[(CO1)(Evaluate/HOCQ)]
			6 + 6 = 12

(a)	Design a 1-bit Comparator circuit.	[(CO1)(Apply/IOCQ)]
(b)	Draw the logic circuit of 3-bit Odd-cum-Even Parity Generat	or and Checker circuit.
		[(CO1)(Apply/IOCQ)]
(c)	Implement 8:1 Multiplexer by 4:1 Multiplexer.	[(CO1)(Analyze/IOCQ)]
		3 + 4 + 5 = 12

Group - D

- 6. (a) Design a synchronous mod-5 counter using J-K flip-flop. [(CO2)(Create/HOCQ)]
 (b) Among synchronous counter and asynchronous counter which one is faster and why? [(CO2)(Remember/LOCQ)]
 - (c) Realize a 3 bit ring counter and explain its operation with proper timing diagram.
 [(CO2)(Analyse/IOCQ)]
 6 + 2 + 4 = 12
- 7. (a) Convert SR flip flop to :- (i) D flip flop (ii) JK flip flop.
 (b) What is Race Around condition? How is it eliminated? [(e)
- [(CO2)(Apply/IOCQ)] [(CO2)(Understand/LOCQ)]

5

B.TECH/CSBS/CSE/CSE(AI&ML)/CSE(DS)/3RD SEM/ECEN 2104/2022

(c) State the differences between combinational logic circuit and sequential logic circuit. [(CO2)(Remember/LOCQ)]

6 + 4 + 2 = 12

Group - E

- 8. (a) Design a basic 2 input TTL NAND gate and explain. [(CO5)(Remember/IOCQ)]
 (b) Implement the function Y = (A + B) using CMOS logic circuit. [(CO4)(Apply/IOCQ)]
 6 + 6 = 12
- 9. Write short notes (any 2):
 - (i) Master-Slave Flip flop
 - (ii) 4-bit BCD adder

(iii) 4-bit even parity generator and checker.

[(CO1)(Remember/LOCQ)] 6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	27.08	47.92	25

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Learn Binary Number system and logic design using combinational gates.
- 2. Design applications of Sequential Circuits.
- 3. Design Finite State Machines.
- 4. Learn Memory classifications.
- 5. Learn basics of CMOS logic.
- 6. Learn various digital component design as used in VLSI applications.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

3

ECEN 2104