B.TECH/ME/4TH SEM /MATH 2001/2016

(vi) The solution of
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$$
 is
(a) $z=f_1(y+x) + f_1(y-x)$, (b) $z=f_1(y+x) + f_2(y-x)$,
(c) $z=f_2(y+x) + f_2(y-x)$, (d) $z=f(x^2-y^2)$.
(vii) P.I. of $(D^2 - D^2)z = \cos(x+y)$ is
(a) $\frac{x}{2}\cos(x+y)$ (b) $\frac{x}{2}\sin(x+y)$
(c) $x\sin(x+y)$ (d) $x\cos(x+y)$
(viii) If $f(z) = \frac{1}{z^4 - 2z^3}$, then $z = 0$ is a pole of order
(a) 3 (b) 2 (c) 1 (d) 4.
(ix) If $F\{f(z)\}=F(s)$ and $a \neq 0$, then $F\{f(at)\}$ is
(a) $\frac{1}{a}F(s/a)$, (b) $-\frac{1}{a}F(s/a)$,
(c) $\frac{1}{|a|}F(s/a)$, (d) none of these.

(x) Residue of
$$f(z) = \frac{2 + 3 \sin \pi z}{z(z-1)^2}$$
 at z=0 is
(a) 1, (b) 3, (c) 2, (d) i.

Group – B

2. (a) Show by definition that the function
$$f(z) = \begin{cases} \frac{z(z-\overline{z})}{2i|z|}, & \text{when } z \neq 0\\ 0, & \text{when } z = 0 \end{cases}$$

is continuous at z=0.

(b) Find the analytic function whose imaginary part is
$$\frac{x-y}{x^2+y^2}$$
.
6 + 6 = 12

B.TECH/ME/4TH SEM /MATH 2001/2016

3. (a) Use Cauchy's Integral formula to evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$, where *C* is

the circle |z| = 3.

1 < |z| < 3.

(b) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for the region

(c) Find
$$\int_{C} \frac{z^2 + 2z + 1}{(z - 1)z^2(z - 2)} dz$$
, where *C* is the circle $|z| = 6$.
3 + 3 + 6 = 12

Group – C

4. (a) Find the Fourier series for the function

$$f(x) = \begin{cases} \pi + 2x, & -\pi < x < 0 \\ \pi - 2x, & 0 \le x \le \pi \end{cases}$$
Hence deduce that, $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ...\infty = \frac{\pi^2}{8}$.
(b) Find the Fourier sine transform of $f(x) = \frac{1}{x}$.
 $7 + 5 = 12$

5. (a) Find the Fourier transform of the function $f(x) = \begin{cases} 1, & |x| > a \\ 0, & |x| > a \end{cases}$ and

hence find
$$\int_{-\infty}^{\infty} \frac{\sin sa \cos sx}{s} ds$$
.

(b) Find the Fourier inverse transform of the function $F(s) = \frac{1}{s^2 + 4s + 13}.$ 7 + 5 = 12

MATH 2001

2

MATH 2001

3

B.TECH/ME/4TH SEM /MATH 2001/2016 Group - D

6. (a) Prove that
$$\int_{-1}^{1} P_m(x)P_n(x)dx = 0$$
 if $m \neq n$ where $P_m(x)$ and $P_n(x)$ are Legendre polynomials.

(b) Show that, $J_n(-x) = (-1)^n J_n(x)$.

7 + 5 = 12

6 + 6 = 12

- 7. (a) Find power series solution of the differential equation $(x^{2}+1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} xy = 0 \text{ about the point } x = 0.$
 - (b) Express the polynomial $f(x) = x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre's Polynomials. 7 + 5 = 12

Group - E

- 8. (a) Form the partial differential equation by eliminating the arbitrary function $f(xy + z^2, x + y + z) = 0$.
 - (b) Solve the following partial differential equation by Charpit's method $(p^2 + q^2)y = qz$
- 9. (a) Find the general solution of the following Partial Differential Equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 6 \frac{\partial^2 z}{\partial y^2} = y \sin x.$

(b) Find the solution of
$$\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial u}{\partial t}$$
 for which $u(0,t) = u(l,t) = 0, u(x,0) = \sin \frac{\pi x}{l}$ by method of separation of variables.
5 + 7 = 12

В.ТЕСН/МЕ/4^{тн} SEM /MATH 2001/2016

2016

MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following:10 × 1=10
 - (i) For what value of m, $3y 5x^2 + my^2$ will be a harmonic function? (a) 5 (b) -5 (c) 0 (d) 3.

(ii) If *C* be a closed curve traversed in the anticlockwise sense and enclosing the point z = a, and f(z) be analytic within and on *C*, then

$$\int_{C} \frac{f(z)}{(z-a)^{3}} dz =$$
(a) $\pi i f''(a)$
(b) $-\pi i f''(a)$
(c) $f''(a)$
(d) none of these.

- (iii) The solution of xp + yq = z is
 - (a) f(x, y) = 0, (b) $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$, (c) f(xy, yz) = 0, (d) $f(x^2, y^2) = 0$.
- (iv) If F(s) be the Fourier transform of f(t), then the Fourier transform of f'(t) is
 (a) F(s), (b) -isF(s), (c) isF(s) (d) none of these.
- (v) The regular singular point of the ODE xy'' + 2y' xy = 0 is (a) x = 1 (b) x = 2 (c) x = 0 (d) none of these.

MATH 2001

1

MATH 2001

4