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Abstract: Protein–protein interactions (PPIs) have been widely used to understand different biological processes and cellular
functions associated with several diseases like cancer. Although some cancer-related protein interaction databases are
available, lack of experimental data and conflicting PPI data among different available databases have slowed down the cancer
research. Therefore, in this study, the authors have focused on various proteins that are directly related to different types of
cancer disease. They have prepared a PPI database between cancer-associated proteins with the rest of the human proteins.
They have also incorporated the annotation type and direction of each interaction. Subsequently, a biclustering-based
association rule mining algorithm is applied to predict new interactions with type and direction. This study shows the prediction
power of association rule mining algorithm over the traditional classifier model without choosing a negative data set. The time
complexity of the biclustering-based association rule mining is also analysed and compared to traditional association rule
mining. The authors are able to discover 38 new PPIs which are not present in the cancer database. The biological relevance of
these newly predicted interactions is analysed by published literature. Recognition of such interactions may accelerate a way of
developing new drugs to prevent different cancer-related diseases.

1௑Introduction
Protein–protein interactions (PPIs) play a key role in different
physiological processes and signal pathways in the human body.
Most of the biological activities in a cell are controlled by proteins.
The proteins are also important for the functional and structural
development of different organs of the body [1, 2]. It is observed
that some of the proteins perform their operations independently
but a vast number of proteins interact with each other to complete a
proper biological function.

Cancer, one of the deadliest diseases of mankind, is nothing but
the abnormal growth of the cells. Genes inside a cell, raise the
instructions to protein so that the protein can execute the
appropriate function for the cell [3]. The Cancer Genome Atlas
(http://cancergenome.nih.gov) [4] and The International Cancer
Genome Consortium (http://icgc.org/ icgc/cgp) [5] have discovered
that cancer disease alters the genome characteristics. This alteration
changes the proteins' features that regulate cell growth. As a result,
cells increase maniacally and turn into cancerous. So, identification
of these proteins and its interaction with other proteins can give
insight knowledge of cancer disease and its pathway. In [6], the
authors have shown that alternation of protein interaction network
and abnormal cell growth led to tumorigenesis and some other
disease progression.

Recently, cancer-related research work has gained a lot of
interest. As a result, target PPI for anticancer strategy has also
increased. However, those investigations reveal only a small part of
the total possible PPIs. The total number of potential PPI within
one cell is large. So, verification of each and every interaction
experimentally is not feasible. This leads to developing
computational methods to predict large PPIs and validate them by
further biological experiments [7]. A structure-based approach is
applied in the paper [8] for acquiring cancer-related hub proteins.
Here the genes are classified according to their phenotypes. The
paper proves that the interfaces of the cancer-related proteins are
different from non-cancer interfaces within a phenotype. In [9], the
authors have prepared a cancer PPI network, termed as OncoPPi
network using time-resolved Förster resonance energy transfer
technology. They have discovered around 260 new high confidence

PPIs, mostly for lung cancer, which is not identified previously. A
system biology-based method is applied in [10] to predict cancer
PPI, especially lung, breast, and ovarian cancer. In [11], the authors
have done a global comparative analysis on different cancer data
sets of bladder, colon, kidney, and thyroid cancers. They have
identified that a set of molecular functions (GO-MF) and biological
processes (GO-BP) are similar in all these cancers with the help of
the GEO database (Gene Expression Omnibus). A cancer PPI
database based on the pathway was constructed in [12]. The
authors investigated that the cancer-related proteins' alterations
tend to cluster in modules and these modules are closely linked to
particular biological pathways. In [13], the authors examined the
dynamic structure of the human protein interaction network and
analysed the intermolecular and intramolecular hub proteins. In
intermolecular hub proteins, the interacting proteins are co-
expressed in a tissue-restricted manner. On the other hand, the
proteins in the intramolecular set are co-expressed with their
interacting proteins in all or most tissues. They have applied this
method for breast cancer diagnosis in [13]. Note that utilisation of
these data sets is limited due to lack of experimental data and
conflicting PPI data among different available databases. In
addition, none of these cancer-focused literature studies have
considered the annotation type and direction of interactions.

Motivated by this, a database consists of PPI between different
cancer disease-related proteins and other human proteins with
annotation type and direction have been prepared. All the
interactions are collected from STRING www.string-db.com [14,
15], and cross-validated by BioGRID version 3 https://
thebiogrid.org [16] and DIP https://dip.doe-mbi.ucla.edu database
[17]. Then biclustering-based association rule mining (ARM)
algorithm is applied to this data set to predict new interactions.
ARM has been applied to many studies for prediction including
different PPI databases [18–20]. However, in this article, we are
using this algorithm to predict new interactions of cancer-
associated proteins which is not done previously as per our
knowledge.

The traditional classifiers require both positive and negative
data set to design the training model. However, for any PPI
database, experimentally validated, i.e. positive data set is
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available. However, there is no ‘gold standard’ of preparing
negative data set is addressable. Therefore, in most of the studies,
negative data sets are generated by choosing random samples based
on the hypothesis that random pairs are less expected to interact
physically [21, 22]. As a consequence, the performance of the
classifier extremely depends on the selection of the negative
samples. The ARM algorithm alleviates the need for choosing
negative samples (non-interacting pairs of proteins) which is
needed for building a classifier and can predict PPI from the
information of experimentally validated PPIs only. In addition,
traditional classification-based approaches cannot predict the
annotation type and direction of the interactions. In the proposed
approach, we are able to predict the type and direction of the
interactions, and thus it is easier to validate them through
experiments. Classical Apriori algorithm for ARM algorithm
generates frequent itemsets first and then extracts rules from these
frequent itemsets. As a result, the time complexity of the algorithm
is usually high for large data sets. Moreover, as any subset of a
frequent itemset is also frequent, the algorithm requires huge
memory to store redundant frequent itemsets. Therefore, the
biclustering algorithm is used to improve the space and time
complexity of ARM. We have applied the biclustering algorithm to

generate the frequent closed itemsets (FCIs) from the PPI matrix
and then the rules are extracted from the FCIs. Note that the
number of FCIs is much less than the number of frequent itemsets,
and they contain non-redundant information. The time complexity
comparison of these algorithms is also included in a separate
section.

The proposed biclustering-based ARM algorithm generates a
set of new rules and using these rules, we are not only predicting
new PPI interactions, but also the type and direction of the
interactions. As the number of proteins having common interaction
type and direction is very less, we have discovered only 38 new
interactions which are not present in published databases. The
biological relevance of these interactions is studied in various
works of literature. The study will give helpful data to establish
new relationships among cancer-related proteins and accelerate the
discovery of new medications.

2௑Methods
2.1 Disease-Protein mapping database

Researchers have officially found proteins that are responsible for
various cancer diseases. The information is gathered from http://
www.bmrb.wisc.edu/data_library/Diseases/. We have placed our
findings in Table 1 (File D1). Protein plays key roles in different
cellular processes like to regulate all processes, cascading signals,
accelerate some chemical reactions etc. [23]. So, identifying those
proteins as well as the interaction between these proteins with the
rest of the proteins of the human body is very important for the
comprehension of the functionality of a living cell. This will help
the researchers to find the specific pathways of other diseases that
may result due to PPI.

2.2 PPI database with annotation type and direction

All the human proteins that interact with these cancer-related
proteins, mentioned in Table 1, are extracted from STRING [14,
15] database. The STRING database contains more complete
annotation type and direction information compared to other
databases like Biogrid and DIP. As our main focus of the paper is
finding annotation types and directions of predicted interactions,
we have prepared the cancer PPI data from the STRING database.
To construct a high throughput cancer PPI database, a high
threshold value (0.7) is considered for extracting PPI from
STRING (File D2). All these interactions are cross-validated by
BioGRID version 3 [16] and DIP database [17] by eliminating the
interactions which are not present in BioGRID or DIP. 

We retrieved a total of 680 cancer-focused PPI between cancer-
related human proteins and other human proteins. A snapshot of
the database is shown in Table 2. The direction field plays a very
important role in prediction. Basically, a cell responds to stimuli
through different signaling pathways. Then the proteins in a cell
interact with each other to transmit those signals. Now, the
direction of interaction represents the direction of signal flow. So,
it gives the information which protein activates/reacts/expresses/
catalyses or post-translates which protein. Three types of direction
(0, 1, and − 1) of the interactions based on a directed graph are
considered here. These three values (0, 1, and − 1) indicate that the
relation between the two proteins is either uni-directional or bi-
directional [24]. If a signal flows in only one direction, for
example, from protein 1 to protein 2, then the direction will be uni-
directional, i.e. 1 or −1. However, if the signal can flow in both
directions, then the direction will be bi-directional, i.e. 0. From
Table 2, it can be seen that CSF3 interacts with SELL. The
interaction type is activation and direction is 1. So, from this, we
can conclude that CSF3 activates SELL. In the same way, BAG1
and HSPA8 bind with each other as the direction of interaction is 0.

There are six unique interaction types found in the cancer data
set. They are binding, expression, catalysis, reaction, activation,
and post-translation. The frequency of each interaction is shown in
Fig. 1 in descending order. It can be noted from the figure that most
of the interactions have annotation type binding (304), whereas,
only 25 PPIs have annotation type activation. 

Table 1 Different cancer diseases and the proteins
responsible for the particular types of cancer
Various types of cancer Responsible proteins
acute myeloid leukemia RUNX1, HIST3H3, KRAS, NPM1,

CBFA2T2
adenocarcinoma S100A4
B-cell lymphoma BCL6
bladder cancer AMFR
breast cancer BRCA1, CXCR1, DMTF1, DEFB106,

LMO4
colorectal cancer ANKS1A, S100A4, KRAS
esophageal cancer SPINK7,PICK1
fibrosarcoma ETV6
insulinoma INSM1
laryngeal cancer BAG1
leukemia MLLT3,CRKL,KAT6A
ewing sarcoma EWSR1
liver cancer DLC2
lung cancer KEAP1
lymphoma BCL2L1,CSF3
melanoma MIA,S100B
nephroblastoma/Wilms’ tumor BASP1
ovarian cancer BRCA1,DAB2
pancreatic cancer AGR2
prostate cancer MMP23B
renal cancer STIP1
rhabdomyosarcoma TTN
epithethial cancer MUC1
 

Table 2 Five fields of protein interaction database
associated with cancer disease
Protein 1 Protein 2 Annotation type Weight Direction
CSF3 SELL activation 0.8 1
CSF3 SELL expression 0.8 1
CSF3 CXCR4 activation 0.8 1
ERBB2 CXCR4 activation 0.8 1
CXCL12 CXCR4 expression 0.8 1
BAG1 HSPA8 binding 0.999 0
KEAP1 CUL3 binding 0.937 0
The first two columns represent the names of two interacting proteins, the third
column represents the type of interaction, the fourth column represents the weight or
confidence of the interaction (between 0 and 1), and the last column represents the
direction of interaction (1 for first protein to second protein, −1 for second protein to
first protein, and 0 for both direction)
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2.3 Association rule mining and bimax biclustering algorithm

In data science, ARM is utilised to discover interesting relevant
relationships covered up in extensive information sets. We can
represent all unexposed interactions in the form of association rules
[25]. A mathematical model can be used to address the problem of
mining association rules. Let I = i1, i2, …, im  be a set of literal,
called items. Let D be a set of transactions, where each transaction
T is a set of items such that T ⊆ I. Let X be a set of items. A
transaction T is said to contain X if and only if X ⊆ T . An
association rule can be expressed by the form X => Y, X ⊂ T ,
Y ⊂ I, and X ∩ Y = ∅. There are two parameters are associated
with ARM-confidence, and support. Confidence denotes the
strength of implication and support indicates the frequencies of the
occurring patterns in the rule. Rules that satisfy both user-defined
minimum support (minsup) and minimum confidence (minconf) are
referred to as strong rules. The main task of the algorithm is to
identify strong association rules in large databases. This can be
done by producing FCIs. If support of an itemset is greater than or
equal to some threshold (minsup), then the itemset is called
frequent itemset. An itemset A is called closed if there exists no
proper super-itemset B such that B has the same support value as
A. Now an itemset is called closed frequent itemset if it satisfies
the criteria of both frequent and closed itemset.

However, the generation of FCI from ARM is a two-step
process. First, from all defined itemsets, common sets of items are
gathered that have at least a minimum support(minsup). Then, high
confidence rules are generated from each frequent itemset. As any
subset of a frequent itemset is also frequent, frequent itemset
mining using ARM is computationally expensive. It incurs a huge
memory overhead [26]. To minimise the complexity of ARM,
biclustering technique is used to directly mine the closed frequent
itemsets reducing the time and space required for mining all
frequent itemsets.

Biclustering is a special clustering technique which is very
useful for synchronous grouping of the rows and columns of a
matrix [20]. This is different from the normal clustering approach.
Clustering technique can be applied to either rows or columns of
matrix separately but biclustering performs clustering in both
dimensions simultaneously. This will generate sub-matrices having
a unique pattern as clusters. Each of these submatrices is called a
bicluster. Let P = p1, p2, …, pn  be a set of rows and
Q = {q1, q2, …, qm} be a set of columns of a data matrix B = bi j ,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. A submatrix with a subset I of
rows and subset J of columns is called a bicluster if all the values
of rows and columns follow consistent patterns where I ⊆ P and
J ⊆ Q. There are many biclustering algorithms in the literature.
Here we have used Bimax (Binary inclusion-Maximal) algorithm
to perform biclustering in our data set. From a binary matrix, the
Bimax algorithm generates all biclusters that contain 1's only. This
is achieved by applying the divide-and-conquer strategy
recursively on binary data. All these generated biclusters are
maximal biclusters in nature [27]. A maximal bicluster is one
which is not included within another bicluster. Thus the set of
columns of a maximal bicluster corresponds to a closed itemset
because the addition of any column with this set will only reduce

the support of the column set. Hence a maximal bicluster actually
represents a closed frequent itemset.

2.4 Proposed methodology

The proposed methodology in the paper is comprised of two
phases: (i) finding all maximal biclusters and maximal FCIs using
Bimax algorithm, (ii) extract the important rules using Apriori
ARM approach.

The sets of data items which appear together in most of the
occurrences are called frequent itemset. Various study show that
only a few proteins act alone. Most of the proteins interact with
each other to execute a proper biological function. So, PPI can be
viewed as a frequent itemset problem. Frequently closed itemset
concept comes from economic market basket analysis. It tracks the
frequent combinations and associations of items purchased together
with the objective of understanding the activity of retail customers
[28]. In this study, the Bimax algorithm is used to extract the
maximal frequent itemsets from the cancer PPI database. Note that
the Bimax algorithm operates only on binary data [29]. Therefore,
we have first converted the cancer PPI database into an adjacency
matrix (Table 3), where the rows specify the unique proteins and
the columns correspond to the interacting proteins with annotation
types and directions of the interactions written in Interacting
ProteinName_AnnotationType_Direction format. Therefore, the
values of the table become binary. An entry ‘1’ in the matrix refers
to the presence of the connection between the corresponding
protein pairs with that particular annotation and direction, and an
entry of '0' denotes the absence of any information between the
association of the comparing proteins. This adjacency matrix helps
to find out the FCIs so that the new interactions can be predicted.
As there are a very small number of proteins which share common
interacting protein with the same annotation type and direction, the
adjacency matrix is sparse in nature. As an illustration, a sample of
the adjacency matrix corresponding to Table 2 data has been shown
in Table 3. 

Bimax algorithm is applied to this preprocessed data using
Biclustering Analysis Toolbox (BicAT), [30], openly accessible
from http://www.tik.ethz.ch/sop/bicat/ to identify all maximal
biclusters. The columns for each maximal bicluster correspond to a
closed frequent itemset. The whole procedure can be described by
following algorithm 1 (Fig. 2). The codes and flowchart are given
in Appendix (File D8). 

2.5 Predictive performance comparison

The adjacency matrix prepared in the previous step is sparse in
nature. However, PPI prediction for the sparse network is a
challenging task. In many studies, adjacency matrix factorisation
(AMF) has been used for link prediction for sparse data set [31]. In
[32], Yokoi et al. implemented the link prediction method using
incidence matrix factorisation (IMF) and showed that this
algorithm performed better compared to adjacency matrix
factorisation when the network became sparser. However, the
functioning of IMF deteriorates for complex real-world networks
having high clustering coefficient (>0.01). In a graph, the
clustering coefficient is defined as the ratio of the number of edges

Fig. 1௒ Distribution of the frequency of interaction types in the whole Cancer Data set. It can be seen from the figure that most of the interactions have
annotation type binding (304), whereas, only 25 PPIs have annotation type activation
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among the neighbours of nodes to the maximum number of edges
that could potentially exist between the nodes. We have noted that
the clustering coefficient (as defined in Section 4) of our cancer
PPI data set is 0.291, which signifies the scale-free property of the
network. IMF is not expected to give good results for networks
having such high clustering coefficient value. Before applying the
proposed method to predict PPI, we have compared the algorithm
with IMF and AMF. We have divided the adjacency matrix
prepared in Section 2.4, into training (70%) and testing (30%) data
set. Thereafter, randomly some 1's, i.e. edges are eliminated from
testing data set. Then IMF, AMF, and the proposed method are
trained using training data set and applied to test data set to
examine how many eliminated 1's, i.e. how many artificially
removed links can be predicted. We have repeated the procedure
for five times by eliminating 10, 20, 30, 40, and 50% edges from

the testing matrix. Five-fold cross-validation scheme is employed
and the performance metric of each case and their average is
reported in Table 4. The performance metric (M) can be calculated
as

M =
The number of eliminated edges detected

The total number of eliminated edges
× 100% . (1)

The algorithm of above procedure is discussed in Fig. 3. It can
be seen from the table that Biclustering-based ARM can detect
more removed links (77.2%) compared to the IMF (69.6%) and
AMF (74.4%). Therefore, we have predicted a set of unknown
cancer PPI using Bimax-based ARM technique and these
interactions can be further validated by experimental results. 

3௑Predicting new interactions
Bimax algorithm calculates a total of 31 FCIs. Using Apriori
algorithm of ARM, 294 rules describing the association among the
proteins are generated from these FCIs considering minimum
support (minsup) 0.03 and minimum confidence (minconf) 0.5. The
adjacency matrix that we have formed is a sparse matrix. So, the
probability of the same protein_annotationtype_direction
appearance in the rule sets is very less. Also, the minimum support
value should be low enough to obtain sufficient numbers of rules.
Considering min_support value 0.01, only 11 rules are produced,
which is very small compared to our database size. After several
trials, we have considered the minimum support (minsup) is 0.03
and minimum confidence (minconf) is 0.5 so that a reasonable
number of unique high throughput interactions can be predicted.
This criterion generates 294 rules. The procedure of generating
rules from FCIs can be explained by the following example.

Consider a FCI consisting of annotated human proteins as
follows: P1_a1_d1, P2_a2_d2, P3_a3_d3, and P4_a4_d4, where
Pi denotes interacting proteins, each ai denotes the interaction type
and di denotes direction tagged with each of these proteins. A list
of some possible rules constructed from those proteins is as
follows:

(i) P1_a1_d1, P2_a2_d2, P3_a3_d3 ⇒ P4_a4_d4
(ii) P1_a1_d1, P2_a2_d2 ⇒ P3_a3_d3, P4_a4_d4
(iii) P1_a1_d1, P2_a2_d2, P4_a4_d4 ⇒ P3_a3_d3 etc.

A two-step filtering process is applied to these rules. First,
redundant rules are eliminated. Then the rules having confidence 1
are also removed as they signify the interactions that already exist
in the data set. A total of 88 rules from these 294 rules are found to
be unique after the elimination step. All these rules are analysed in
the following manner to predict new PPI. Let us consider, a
predicted rule is,

Table 3 Adjacency matrix corresponding to Table 2 data, where rows are cancer proteins and columns are interacting proteins
with annotation type and direction of interaction written in ProteinName_AnnotationType_Direction format
Protein_protein SELL_Activation_1 SELL_Expression_1 CXCR4_Activation_1
CSF3 1 1 1
ERBB2 0 0 1
CXCL12 0 0 0
BAG1 0 0 0
KEAP1 0 0 0
It can be seen that the matrix discussed here is sparse matrix. Most of the values of the matrix are zero. Only a few proteins interact with each other with common annotation type
and direction

 

 
Protein_protein HSPA8_Binding_0 CUL3_Binding_0 CXCR4_Expression_1
CSF3 0 0 0
ERBB2 0 0 0
CXCL12 0 0 1
BAG1 1 0 0
KEAP1 0 1 0
 

Fig. 2௒ Algorithm 1: algorithm for extracting association rules
 

Table 4 Performance of the IMF, AMF, and the proposed
algorithm to predict artificially removed links
% of
Removed
links

Performance
metric of IMF in

%

Performance
metric of AMF

in %

Performance
metric of Bimax
based ARM in

%
10% 72 74 72
20% 62 64 82
30% 78 74 70
40% 70 82 78
50% 66 78 84
average 69.6 74.4 77.2
For each row, the best result is shown in bold
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CXCR4_Activation_1,STAT3_Post-trans.m_1 ⇒
CXCR4_Expression_1.

The above rule can be understood in the following manner: if
CXCR4 activates any protein with direction 1 and signal
transducers and activators of transcription 3 (STAT3) post-
translates that protein with direction 1 then there is a high chance
of interaction between that protein and CXCR4 with annotation
type ‘Expression’ and direction ‘1’. In this way, we can predict a
list of interactions using the rules generated from the above
procedure.

We have searched our database and found that the above two
proteins (CXCR4 and STAT3) interact with CSF3 and CXCL12
with above annotation type and direction. There is another protein
ERBB2 which is activated by CXCR4 and post-translated by
STAT3 but not expressed by CXCR4. So, we can predict that

CXCR4 will interact with ERBB2 with annotation type
‘Expression’ and direction ‘1’. The analysis can be depicted as
follows:

From database we got the rules

(i) ERBB2 ⇒ CXCR4_Activation_1 and
(ii) ERBB2 ⇒ STAT3_Post-trans.m_1

Now, from the above rules, we can predict the interaction
ERBB2 ⇒ CXCR4_Expression_1
Employing this procedure and eliminating redundant entries we

have predicted a total of 38 unique interactions, not present in the
cancer database (File D4). The circulation of the confidence levels
of these predicted associations varies from 0.5 to 0.75. Fig. 4
demonstrates the dissemination of the number of predicted rules at
various confidence levels. If annotation type and direction of the
interactions are not considered, then applying the same
methodology and threshold, 55 new interactions can be predicted
(File D7). The frequency of each interaction with the annotation
type is shown in Fig. 5. It can be seen that most of the predicted
interactions (21) have annotation type binding, whereas, only two
PPIs have annotation type activation. These frequencies of
annotation types also follow the ratio of the annotation types in
actual cancer PPI database. 

4௑Statistical analysis of PPI database
In this section, the whole cancer PPI network has been modelled as
a graph in which nodes represent the proteins, and edges represent
the interactions between the proteins. Then the network is analysed
using Cytoscape [33] network analyser. The statistical analysis of
cancer PPI network exhibits the scale-free property of degree
distribution of the nodes as only a few proteins interact with a large
number of proteins and a majority of proteins participate in a few
interactions. The degrees of all the 355 unique proteins present in
the database are given in Appendix (File D6). Comparing degrees
of all nodes we got eight hub proteins. They are TP53, UBC,
BRCA1, EGFR, PTPN11, MUC1, HDAC1, and RUNX1. Hub
proteins are very important in cancer research as they are highly
expressed in diseased cells. It has been noticed that these hub
proteins are present in our predicted interactions. Among 38
interactions, PTPN11 is involved in 12 cases. So, they can be used
as potential drug targets. Before investigating the network, some
parameters ought to be known, are clarified beneath.

Network density: The network density indicates how thickly the
system is populated with edges, disregarding self-circles and
copied edges.
Let G be the graph with the set of edges E and the set of vertices V.
For undirected graph, the density can be defined as

d =
2 E

V ( V − 1)
, (2)

and for directed graph, the density can be defined as

d =
E

V ( V − 1)
. (3)

The density ranges between 0 and 1. A system that contains no
edges and exclusively segregated hubs has a density of 0.
Clustering coefficient: In a graph, the clustering coefficient of a
node is defined as the ratio of number of edges among the
neighbours of the node to the maximum number of edges that
could potentially exist among the neighbours. The total network
clustering coefficient can be calculated as the average of clustering
coefficients of all the nodes in the network. It is basically the
measure of the number of triangles in the graph and can be defined
as

Ci =
Number of triangles connected to node i

Number of triples centered around node i
. (4)

The clustering coefficient for the whole graph can be expressed as

Fig. 3௒ Algorithm 2: algorithm for performance metric calculation
 

Fig. 4௒ Frequency of the number of predicted interactions with annotation
and direction at different confidence levels. It can be noted from the figure
that at confidence level 0.5, maximum number (26) of predicted interactions
are found and at confidence level 0.75 and 0.66, only six interactions are
found at each level

 

Fig. 5௒ Distribution of frequency of the annotation type of the predicted
interactions. It can be seen from the figure that most of the predicted
interactions (21) have annotation type binding, whereas, only two PPIs
have annotation type activation
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C =
1
n

∑
i = 1

n

Ci, (5)

where n = total number of vertices in the graph and
i ∈ {1, 2, . . . , n}.

Using Cytoscape we got the density of our network as 0.008 and
clustering coefficient as 0.291. It is evident that the network is very
sparse in nature as density is near to 0. The clustering coefficient of
0.291 signifies that every node has two to three neighbour nodes.
Hence, it also supports the fact that the proteins responsible for a
similar type of disease, like cancer, tend to interact with each other.
The connectivity for each hub protein is presented in Fig. 6. 

5௑Discussion
We have predicted 38 high confident interactions, not present in the
cancer PPI database, by applying biclustering based ARM on our
PPI database. All these interactions are analysed and some
evidence of these predicted PPI are collected from published works
of literature. We have additionally looked PUBMED for exploiting
some current study recognising the predicted interactions. The
references to those articles can be served as a proof of our
predictions. Among the 38 predicted interactions, 28 interactions
are observed to be experimentally substantial. Most of the cases we
got proofs of interaction type as well as direction also. Table 5
shows some predicted interactions with annotation type and
direction which are validated by literature with PUBMED ID and
references. 

STAT3 protein are excited by various cytokines and oncogenes.
Mizowaki et al. and Iyer et al. analysed the connection between
STAT3 and IL10, which is a cytokine with powerful anti-
inflammatory characteristics in [43, 44]. In T cells, STAT1, and
STAT3 are basic for IL10 gene expression, whereas STAT3 is
essential for IL-6-mediated IL-10 creation. Mouse Double Minute
2 (MDM2) participates in protein synthesis and folding and it is a
proteostasis hub protein. Nicholson J et al. [35] showed that 8-plex
iTRAQ (nanoLC-MS/MS) of MCF7 cells are excited with the
MDM2-binding ligand Nutlin-3. This may help to recognise the
most bounteous cell protein changes over early time focuses. Using
this process 1323 unique proteins are identified and among which
NPM1 is one protein having a steady-state interaction level with
MDM2. Another paper [45] shows that NPM1 binds with MDM2
to prevent proteasomal degradation of p53. This supports our
prediction that MDM2 binds with NPM1 and direction is 0.
S100A4 is a small calcium-binding protein that is usually
overexpressed with different tumor types like tumor suppressor
p53. Orre et al. examined that S100A4 and p53 collaborate in
complex tests and the collaboration increments after inhibition of
MDM2-subordinate p53 degradation [37]. p53 binds with S100A4
and MDM2 and so from transitive dependency the binding relation
between MDM2 and S100A4 can be established. Recently, an
isoform of BAG1 protein (i.e. RAP46) has been announced to bind
several steroid hormone proteins, including AR [38], which agrees
our prediction result. In [42] the interaction between CXCR4 and
ERBB2 is established using interstitial fluid flow technique
through the tissue matrix. This procedure shows that ERBB2

expresses breast cancer cells, depends on epithelial-to-
mesenchymal transition (EMT) and it behaves through a CXCR4-
PI3 K pathway. So, CXCR4 expresses ERBB2 and thus we get the
direction and interaction type of this interaction. PTPN11, SOS1,
RAF1, and KRAS are the four responsible proteins behind the
Noonan syndrome (NS) and autosomal dominant disorder.
Different types of interaction between PTPN11 and SOS1 are
established by some experiments and are presented in [46]. Wang

Fig. 6௒ Major hub proteins of cancer database with annotation type and
direction. Four major hub proteins, namely, TP53, UBC, BRCA1, and
PTPN11 are shown in the figure
(a) TP53, (b) UBC, (c) BRCA1, (d) PTPN11

 

Table 5 Evidences of some predicted interactions with predicted and experimentally proven annotation type, direction,
PUBMED ID, and References
Protein Interacting

protein
Predicted

annotation type
Predicted
direction

Experimental
annotation type

Experimental
direction

PUBMED ID Reference

STUB1 HSPA8 binding 0 binding 0 23880665 [34]
MDM2 NPM1 binding 0 binding 0 23039052 [35]
CREBBP SIN3A binding 0 binding 0 12392082 [36]
MDM2 S100A4 binding 0 binding 0 23752197 [37]
AR HSPA8 binding 0 binding 0 23828170,9565586 [38, 39]
AKT1 IL10 post-transl.m 1 suppresses 1 21255011 [40]
AKT1 ERBB2 post-transl.m 1 activates/cascades 1 26645663 [41]
CXCR4 ERBB2 expression 1 expression 1 25566992 [42]
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et al. [47] proved that CXCR4 expression is upregulated by
cytokine IL10. So, we can conclude that most of the predicted
interactions are supported by recent literature along with predicted
annotation type and direction. Rest of the proofs of interactions are
given in File D5 with predicted and experimentally proven
annotation type, direction, PUBMED ID, paper name and author
name.

According to our evaluation, 28 numbers of interactions among
38 predicted interactions are found to be experimentally validated.
In most of the cases (11), the predicted annotation types and
directions are also supported by existing research documents. The
remaining ten interactions are not found to be validated by any of
the current studies. However, the probability of these interactions is
very high as they are predicted from the rules having high
confidence. We have seen in statistical analysis section that
BRCA1, HDAC1, and RUNX1 are hub proteins. So, they interact
with large number of proteins and all these interactions may not
experimentally analysed. For example, we have predicted BRCA1
binds to STUB1 and HSPA1A. However, no proof of these
interactions are found in published literatures. In [48], Buckley et
al. showed that BRCA1 interacts with different proteins of HSP
protein family like HSP90, HSP70 etc. (HSPA1A also belongs to
HSP family). So, there is high chance that BRCA1 interacts with
HSPA1A. In another study [49], we have seen that ITGA4, SELL,
CXCR3, and CXCR4 act as homing receptors in blood lymphocyte
subsets of normal pregnant women. So, CXCR4 and SELL are
expressed in same manner under certain scenario and they may
interact with each other. Hence we propose that these ten predicted
interactions, which do not have any direct evidence from literature,
are candidates for possible experimental validation. They are likely
to be involved in various cancer types as per the outcome of the
proposed computational approach.

All the predicted interactions are shown in Fig. 7. Analysing
with published literatures against our predictions, we found that 28
interactions are validated by experimental results. Out of 28, 11
interactions' predicted annotation types and directions are
supported by published literatures (File D5). All network diagrams
are created in Cytoscape. 

6௑Comparison between proposed method and
classical ARM
To evaluate the performance of the proposed algorithm with that of
the ARM, we have analysed the time complexity and execution
time for both methods. Although, both the algorithms can generate
the same set of rules, the complexity of classical ARM is high
compared to Bimax-based ARM. If the transactional data set
contains a d number of unique items, then the time complexity of

Apriori-based ARM is O(2d). In [49], the authors have
demonstrated that if the data set contains a d number of items, then
a total of 3d − 2d + 1 + 1 number of rules are generated using
Apriori. So, for a small data set, with say d = 7, it will generate
1932 rules. The performance of ARM degrades when the number
of items in the data set increases. However, most of these rules are
discarded after applying minsup and minconf as the algorithm
generates frequent itemsets first and then calculates rules from
these frequent itemsets. The frequent itemset generation step
requires O(t ∗ 2k − 1) time complexity, where t is the number of
transactions and 2k − 1 is the number of candidate itemsets. The rule
generation step extracts association rules and it takes O(2k − 2)
time complexity for each frequent k-itemset.

This approach is very expensive due to the huge space and time
requirement. To minimise these exponential time complexity of
ARM frequent itemset mining, biclustering technique is used to
directly mine the closed frequent itemsets reducing the time and
space complexity required for mining all frequent itemsets. The
number of FCIs generated by Bimax is much less than the number
of frequent itemsets produced by Apriori-based ARM, and they
contain non-redundant information. Bimax biclustering algorithm
takes O(m ∗ n) time and space complexity to obtain the maximal
closed frequent itemsets, where m is the number of rows and n is
the number of columns of the adjacency matrix. The number of
total biclusters could be huge. So, Bimax algorithm reduces the
search space by choosing only maximal biclusters. Then rule
generation from these maximal biclusters using ARM takes O(2k)
time, where k is the number of maximal frequent itemsets. So, the
total time complexity of the biclustering based ARM is O(m ∗ n)  
+  O(2k).

We have done the experiments on a PC with 4 GB RAM and
2.4 GHz processor running Windows 7 using python programming
language. On the same cancer data set, considering same
confidence and support, the traditional ARM takes 2.1 min,
whereas biclustering-based ARM takes only 30 seconds to generate
the rules.

7௑Conclusion
In this article, we have given a detailed explanation of association
rules to find the specific interactions of the cancer disease that are
biologically significant. For this, we have prepared the cancer-
human PPI database with annotation type and direction to identify
new interactions among several human proteins responsible for
various cancer disease. A total of 38 new interactions that are not
present in the cancer PPI database (i.e. in String database) are
discovered in this study. The algorithm is giving 74% precision as
out of 38, 28 interactions have been found to be supported by some
recent literature. Among these 28 interactions, 11 interactions'
predicted annotation types and directions are also supported by
various literature. These agree with the fact that the predicted
interactions which are not present in the database, exist actually.
So, it reduces the task of biologists to some extent by investigating
only the predicted interaction with annotation type and direction.
They don't need to check all possible combinations of interaction
and annotation type of PPI.

Different studies have been used in different methodologies and
different data sets to explore cancer PPI. Therefore, it is not
justified to compare all these methods considering only the
predicted sets of interaction. This approach based on biclustering-
based ARM has a clear advantage over conventional methods
because of no loss of relevant information and also no need for
negative interaction data set. However, in this study, we have
considered a non-weighted PPI network with annotation type and
direction. A weight field can be added with each PPI to represent
the number of evidence of each interaction found from different
databases. This field can be used to build a weighted PPI network
which can be mined to predict new interactions. In addition, we
plan to improve this approach by incorporating additional features
like domain, gene ontology, amino acid composition, etc. of these
interacting proteins.

Fig. 7௒ Predicted PPIs in this study. Nodes represent proteins and edges
represent predicted annotation type and direction. Green edges represent
the predicted interactions that are experimentally validated in the published
literatures with annotation type and direction. Blue edges represent the
interactions that are experimentally validated but the predicted annotation
type and direction are not validated by the literatures
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Here, we have analysed the proposed methodology to predict
the proteins responsible for cancer disease only. The same
procedure may also be implemented for proteins related to other
diseases like ebola, zika, dengue, HIV, etc. to predict the PPI.
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10௑Appendix
௑
10.1 File D1

Excel file containing different cancer diseases and the proteins
responsible for the particular types of cancer (XLSX).

10.2 File D2

Excel file containing human cancer related PPIs with annotation
type and direction (XLSX).
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10.3 File D3

Excel file containing adjacency matrix with annotation type and
direction of cancer related PPI network (XLSX).

10.4 File D4

Excel file containing predicted PPI with annotation type and
direction (XLSX).

10.5 File D5

Excel file containing predicted PPI's evidence with PUBMED ID
(XLSX).

10.6 File D6

Excel file containing degree distribution of all cancer-focused
proteins.

10.7 File D7

Excel file containing predicted PPI without considering annotation
type and direction of interactions.

10.8 File D8

Codes and flowchart of the proposed methodology. Source: https://
sites.google.com/site/biclusteringbasedarm/biclustering-code
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