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Abstract: Digital microfluidics has recently emerged as an effective technology in providing inexpensive but reliable
solutions to various biomedical and healthcare applications. On-chip dilution of a fluid sample to achieve a desired
concentration is an important problem in the context of droplet-based microfluidic systems. Existing dilution
algorithms deploy a sequence of balanced mix-split steps, where two unit-volume droplets of different concentrations
are mixed, followed by a balanced-split operation to obtain two equal-sized droplets. In this study, the authors study
the problem of generating dilutions using a combination of (1 : 1) and (1:2) mix/split operations, called weighted
dilution (WD), and present a layout architecture to implement such WD-steps. The authors also describe a simulation
based method to find the optimal mix-split steps for generating a dilution under various criteria such as minimisation
of waste, sample, or buffer droplets. The sequences can be stored in a look-up table a priori, and used later in real
time for fast generation of actuation sequences. Compared with the balanced (1:1) model, the proposed WD scheme
reduces the number of mix-split steps by around 22%, and the number of waste droplets, by 18%.
1 Introduction

Advances in microfluidics and microfabrication technologies find
many versatile applications to molecular biology, DNA analysis,
stem-cell manipulation, virology, point-of-care experiments with
BioPen, self-assembly of hydrogels, and for building 3D devices
[1–6]. In recent times, lab-on-chips based on digital microfluidic
(DMF) technology, have enabled the automation of various
biochemical protocols accurately on chip, at a very low cost [7–
16]. The phenomenal growth perceived in this technology has
opened up a plethora of algorithmic challenges such as synthesis
of protocols, design of chip-layout, and path-planning for droplet
routing on a DMF biochip [7]. One important problem in
algorithmic microfluidics, which addresses the above-mentioned
optimisation problems, is sample preparation, that is, to design
efficient dilution or mixing algorithms for fluid droplets. The
objective is to prepare certain dilution of a fluid sample, or a
mixture of several reagents in a certain ratio, while minimising the
number of mix-split steps, the usage of input droplets, or waste
production [8–10, 14–16].

The dilution and mixing of fluids are two fundamental steps of any
chemical assay, and a sequence of (1:1) mixing followed by a
balanced splitting is used in sample preparation with DMF s [8–
10]. In such a (1:1) mix/split operation, two unit-volume droplets
of a sample that are diluted with the same diluent, are mixed
together and then split into two unit-volume droplets. The
concentration of the resulting droplets is the arithmetic mean of
those of the two parent droplets used for mixing.

Weighted dilution (WD) [17, 18] is based on a more powerful
mixing model (k:l ), where a number of droplets (say k) of one
concentration can be mixed with l droplets of another
concentration to achieve a desired concentration of a sample,
where k, l≥ 1. It has been observed that for a given accuracy of
target concentration factor (CF), WD requires fewer mix-spit steps
compared with the use of (1:1) model alone. This in turn, often
reduces the number of waste droplets [19]. However, a weighted
mix-split step is more expensive than the baseline (1:1) mix-split
step because it is not only more difficult to implement on-chip but
takes longer time to perform a mix or a split operation.
In this paper, we restrict the weighted steps only to (1:2) or (2:1)
mixing and present how they can be used together with (1:1) mixing
to generate droplets of desired concentration. Note that if we mix two
solutions, one being the buffer with concentration 0/3 (0%) and the
other being a sample with concentration 3/3 (100%) in (2:1) ratio,
then we will get a solution with concentration equal to

0/3× 2+ 3/3× 1

3
= 1

3
(33.33%)

of the original sample. Similarly, mixing them in (1:2) ratio, will
give a final concentration of 2/3. Hence for denominator 3, we can
generate concentrations with any integral numerator lying between
0 and 3. We can generate all fractional concentrations
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using only two (1:2) or (2:1) mixing steps [19].
More generally, it can be proved by induction that using a

maximum of r (1:2) or (2:1) mixing steps, it is possible to
generate any integral numerator between 0 and 3r with
denominator 3r. Note that in the above case, generation of some of
the fractions within r steps is not always trivial. In fact, in some
cases, feasible solutions do not exist for all intermediate fractions.
As for example, instead of (1:2) type of mixings, if we allowed
only (1:3) or (3:1) type of mixings, we could generate the
fractions 1/4 and 3/4, but we cannot generate 2/4 = 1/2 at all in
this setting. One can also use larger ratios such as (1:3), (1:4), or
(2:3), but mixing algorithms based on such higher ratios will be
more complicated and they are likely to produce more waste
droplets compared with the use of small-ratio mixers. Moreover,
implementation of such mixers will be difficult; mixing time also
increases proportionately for high-ratio mixers. Efficient
implementation of mixing algorithms with larger ratios thus needs
further investigation. Hence, in this work, we have considered
only (1:1) or (1:2) ratio, which improves the performance
compared with the use of baseline ratio (1:1). Compared with the
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balanced (1:1) model, the proposed WD scheme reduces the number
of mix-split steps by around 22%, and the number of waste droplets,
by 18%.

We have also assumed that every split operation is ideal, that is, a
2X-volume droplet can be perfectly split into two 1X-volume
droplets, and from a 3X-volume droplet, an 1X-volume droplet can
be separated without any volumetric error. However, in practice, a
split operation is often not ideal, and hence, it may have an impact
on the target concentration. To achieve error-tolerance in the
presence of such imperfect fluidic operations, a cyberphysical
system with sensor feedback mechanism will be required [20].

In Section 2, we briefly review prior art, and present our
formulation in Section 3. A proof that any fraction can be
generated using (1:2)/(2:1) mix-split steps is presented in Section
4. The WD scheme and experimental results are discussed in
Section 5. The proposed WD scheme, experimental results, and
performance comparison with the baseline ratio (1:1) in terms of
mix-split steps, reactant usage, and waste droplets, are presented in
Section 5. Finally, in Section 6, we conclude our work.
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2 Prior work

Sample preparation is an important step in any biochemical protocol,
and several algorithms are known for automating them on a DMF
lab-on-a-chip [8–13]. However, all prior approaches are based on
the usage of only (1:1) mix-split operations, and they are incapable
of handing any kind of weighted mix-split steps. On-chip dilution
of a sample on a DMF biochip involves several mix-split steps,
which often suffer from the inaccuracies caused by unbalanced
splitting of micro-fluid droplets. Moreover, error minimisation is
highly desirable because of the limited availability of the stock
solutions and costly reagents. Bera et al. analysed the performance
[19] of two dilution algorithms, Min-Mix or TwoWayMix [14]
and dilution and mixing with reduced wastage [15, 16] in the
presence of volumetric errors that may occur during the splitting
process.
ions (https://onlinelibrary.w
ile
3 Problem formulation

To generate a target fraction (Ct), we propose to start the WD
algorithm with two initial CFs (CFs). At every mix-split step, the
algorithm requires two CFs, called the boundary CFs, one lower
Fig. 1 Splitting of one 3X droplet into three 1X droplets on a 2D
rectangular layout
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and one higher than the Ct. If Ct is inclined more towards the
lower CF, then the lower CF is mixed more to generate the
intermediate CF, that is, by mixing the lower and higher CFs in
(2:1) ratio, otherwise mixed in (1:2) ratio. Using the proposed
scheme, we can achieve any fraction (Ct) on top of a
pre-computed denominator. The denominator depends on the
maximum number of (1:1) and (1:2) or (2:1) steps allowed. As for
example, any fraction from 1 to 17 can be generated with a chosen
denominator (21 × 32 = 18) by using at most one balanced and two
weighted steps. A target concentration Ct (e.g. 9/18) may be
achieved either in one step of (1:1) mixing or by using a
maximum of three mix-split steps (e.g. 1/18).

In (1:2) weighted scheme, the mixing of three droplets can be
accomplished either by a conventional mixer [17], or by using a
pathway mixer where the droplets are mixed to each other while
being navigated along a path or along a linear arrangement of
electrodes. Consider Fig. 1. A ‘0’ mark on any electrode denotes
that it is connected to the ground and on the other hand, a ‘1’
mark denotes that it is connected to a high actuation voltage. The
splitting of one three-unit volume (3X ) droplet into three
unit-volume (1X ) droplets can be implemented by instantiating a
T-type orthogonal pattern on a 2D regular rectangular electrode
array. Consider a 3X droplet at time t = 0; at time t = 1, we apply
the control voltage to all the three electrodes to begin the splitting
process. By varying the patterns of control voltage activation, the
1X droplet is moved right at time t = 2. At time t = 3, again the
same 1X droplet is shifted further right. Such 3X→ 1X mix-split
process can be performed more accurately using a customised
electrode pattern layout where the three arms are oriented mutually
at 120° apart (Fig. 2). In this architecture, during the split
operation, the pulling force along the right arm counter-balances
that on the left, which is the sum of horizontal components of the
forces along the other two arms. This tends to minimise the
volumetric imbalance during splitting of a 3X droplet into three 1X
droplets.

The fraction or sequence generation problem can now be formally
stated as follows. Given the maximum number of balanced steps b
and weighted steps w,

(i) Compute the denominator D = 2b × 3w and maximum number
of total steps t = b + w.
(ii) Initial lower numerator = 0 (buffer) and initial upper numerator
=D (sample).
(iii) Goal is to achieve all the fractions with numerators within d1 to
D− 1 using (1:1) and/or (1:2)/(2:1) mixing steps.
(iv) While generating a particular fraction, we try to minimise one
or more of the following criteria, that is, the number of (a) total
mixing steps, (b) weighted steps, (c) waste (d) sample and (e)
buffer droplets.

4 Generation of any fraction using (1:1) and (1:2)/
(2:1) mix-model

Suppose we are mixing p (1:1) steps and q ((1:2) or (2:1)) steps.
Hence denominator is 2p × 3q. We now present a method to show
Fig. 2 Accurate splitting of a 3X droplet into three 1X droplets using a
customised mix-split unit
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Fig. 3 Generation of 7 different fractions from sequence BW1W2
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that all the fractions with numerators –varying from 1 to (2p × 3q− 1)
can be generated using at most (p + q) steps. We show below that
there exists at least one way for generating each fraction.

First, we use up the balanced steps as many times as required.
After a maximum of p balanced steps, we can generate an interval
of size 3q and then we can generate any fraction in an interval of
3q using q number of (2:1) or (1:2) mixing steps. For illustration,
let p = 3 and q = 2, then denominator = 8 × 9 = 72. To get a fraction
of 36/72, a single 1:1 step is necessary. To get 18/72, a second 1:1
step with boundaries 0/72 and 36/72 is required. However, for 22/
72 we use the 3rd 1:1 step with boundaries 18/72 and 36/72 to
first get the fraction 27/72. Then we will have two boundary
concentrations of 18/72 and 27/72 with an interval of 9 = 3q

(where q = 2) in the numerator.

Lemma 1: We can generate all the fractions with distinct numerators
ranging from 1 to 3q− 1 and denominator 3q, using a maximum of q
weighted mixing steps.

Proof: We will show the above result by proving a stronger claim
using induction. To show that we can generate 3q− 1 distinct
fractions at equal intervals between 2 given fractions using a
maximum of q weighted mixing steps.

Base step:When q = 1, using the smaller fraction (say 0/3) and larger
fraction (say 3/3) as the boundary concentrations, mix 0 and 3 using
(1:2) mix-model to get numerator 2 (i.e. 2/3 concentration) or mix 0
and 3 using (2:1) dilution to get numerator 1 (i.e. 1/3 concentration).
Note that it holds true for any generalised numerators. If we used x
and (x + 3) instead of 0 and 3 respectively, then (2x + (x + 3))/3
would have given us (x + 1) and (x + 2(x + 3))/3 would have given
us (x + 2). Hence from x/y and (x + 3)/y, we would successfully
generate (x + 1)/y and (x + 2)/y in just 1 weighted mixing step.

Induction hypothesis: We can generate 3q−1− 1 distinct fractions at
equal intervals between 2 given fractions using a maximum of q – 1
weighted mixing steps.

Induction step: Suppose the numerators of the lower and upper
boundaries are L and U respectively. Specifically in our case U−
L = 3q.

After using just one weighted step, we have

Case 1: If we use (1:2) mixing of L and U, we will get

U ′ = (L+ 2U )

3
= L+ 2× 3q−1

(by substituting U = L + 3q).
Case 2: If we use (2:1) mixing of L and U, we will get

L′ = (2L+ U )

3
= L+ 3q−1

(by substituting U again).

Note that L′ − L =U ′ − L′ =U−U ′. Hence L′ and U ′ divide the
whole range into three equal parts. In our case, L and U are
separated by 3q and hence each part is equal to 3q−1. If now the
target concentration lies

(a) In the upper half – Use Case 1 above and then use the induction
hypothesis between U ′ and U.
(b) In the lower half – Use Case 2 above and use the induction
hypothesis between L and L′.
(c) In the middle half – This is the non-trivial part. Note that if we
had created both L′ and U ′, we could have used the induction
hypothesis easily to get any numerator in this interval also.
However, using only 1 weighted step, we could not have created
both L′ and U ′ and hence we would have used 2 + (q− 1) = q + 1
steps in total, which is not intended. Hence we need to use a trick.
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 3, pp. 119–127
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Using L and U ′ as the two boundaries, and the induction
hypothesis we can generate all the numerators from L to U ′ at an
arithmetic progression of 2. Similarly, using L′ and U as the two
boundaries, and the induction hypothesis we can generate all the
numerators from L′ to U at an arithmetic progression of
2. Together we can exhaust all the numerators from L′ to U ′.
Hence the proof.

□

Example 1: Take q = 2. Starting fractions L = 0/9 and U = 9/9. Now
after the 1st step we can generate L′ = 3/9 or U ′ = 6/9.

(i) Mix L and L′ to generate 1/9 and 2/9.
(ii) Mix U′ and U to generate 7/9 and 8/9.
(iii) Mix L and U ′ to generate 2/9 and 4/9.
(iv) Mix L′ and U to generate 5/9 and 7/9.

Note that all fractions were generated for q = 2.

Example 2: Now for q = 3, let, L = 0/27, L′ = 9/27, U ′ = 18/27 and
U = 27/27.

We can use Example 1 to generate 1/27 to 8/27 and 19/27 to 26/27.
The difficult numerators are 10, 11, 12, 13, 14, 15, 16 and 17. Out of
these 10, 12, 14 and 16, that is, the even ones can be generated using
0/27 and 18/27 as boundaries, whereas the odd ones can be generated
by using 9/27 and 27/27 as boundaries.
5 Proposed scheme

Note that for optimising every different criterion out of those five
stated in the problem formulation (Section 3), we may need a
different sequence of weighted mix-split steps. Moreover, for some
fractions it may be possible to optimise all the above criteria
simultaneously, but not for all. Another important observation is
that even for the balanced dilution method, the maximum number
of mix-split steps that suffices for all practical purposes is around
10, that is, having a denominator of 210 = 1024 in the CF is
sufficiently accurate. Considering the above facts, we now propose
to employ a method of exhaustive simulation for generating the
optimal sequence of steps for every criterion, which though
exponential, makes perfect sense as the number of steps is small.
Our simulation result demonstrates that the proposed method is
useful in implementing on-chip dilution efficiently.

We adopt a look-up table method to search for an optimal
mix-split sequence required to generate a given target
concentration. The table is constructed beforehand off-line by
exhaustive enumeration as stated earlier; at the time of protocol
realisation, when a target concentration is requested, the best
sequence is found in real-time immediately. Note that this can be
done entirely offline just by knowing b and w. When the actual
121
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Fig. 4 Unique ways of generating fractions

a 21 unique step-sequences starting with (1:1)
b 23 unique step-sequences starting with (2:1)
c 23 unique step-sequences starting with (1:2)

IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 3, pp. 119–127
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Table 1 Step sequences for fraction generation with D = 18

Target Frequency of mix-split
sequences

Opt.
steps

Wgt.
steps

Waste Input
sample

Input
buffer

Required mix-split sequence

Step 1 Step 2 Step 3

1 3 3 2 3 1 5 (2:1)-0-18-6 (1:1)-0-6-3 (2:1)-0-3-1
2 7 2 2 2 1 4 (2:1)-0-18-6 (2:1)-0-6-2
3 2 2 1 1 1 3 (1:1)-0-18-9 (2:1)-0-9-3
4 7 2 2 1 1 3 (2:1)-0-18-6 (1:2)-0-6-4
5 3 3 2 1 1 3 (2:1)-0-18-6 (1:1)-0-6-3 (1:2)-3-6-5
6 3 1 1 0 1 2 (2:1)-0-18-6
7 2 3 2 2 2 3 (1:1)-0-18-9 (1:2)-0-9-6 (2:1)-6-9-7
8 6 2 2 1 2 2 (1:2)-0-18-12 (1:2)-0-12-8
9 1 1 0 0 1 1 (1:1)-0-18-9
10 6 2 2 1 2 2 (2:1)-0-18-6 (2:1)-6-18-10
11 2 3 2 2 3 2 (1:1)-0-18-9 (2:1)-9-18-12 (1:2)-9-12-11
12 3 1 1 0 2 1 (1:2)-0-18-12
13 3 3 2 1 3 1 (1:1)-0-18-9 (1:2)-9-18-15 (1:2)-9-15-13
14 7 2 2 1 3 1 (1:2)-0-18-12 (2:1)-12-18-14
15 2 2 1 1 3 1 (1:1)-0-18-9 (1:2)-9-18-15
16 7 2 2 2 4 1 (1:2)-0-18-12 (1:2)-12-18-16
17 3 3 2 3 5 1 (1:2)-0-18-12 (1:1)-12-18-15 (1:2)-15-18-17
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generate a particular fraction by reading the look-up table, losing
no time for computation. Such small look-up tables can be loaded
even in embedded systems with very little memory overhead.
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5.1 Small example

Let us consider a small example with at most one balanced (B) and
two weighted (W ) steps. We note the following parameters and facts
– (i) b = 1, w = 2, t = b + w = 1 + 2 = 3; (ii) Denominator D = 2b × 3w

= 21 × 32 = 18; (iii) Number of ways the steps can be executed is
three (BWW, WBW, WWB); (iv) each weighted step may be (2:1)
(W1) or (1:2) (W2). Hence each of the above three sequences may
be written in 2 × 2 = 4 different ways giving 12 permutations in
total. Now, each of these three elements (B, W1 or W2) represents
a mix-split step by which a new intermediate fraction will be
generated. Hence the range of fractions designated by the two
initial concentrations used for mixing will now be divided into
two distinct ranges by the new fraction. For each of the 12
sequences, seven new fractions can be generated that can be
represented using a complete binary tree (CBT) having three
levels, as shown in Fig. 3. A CBT with three levels will have 23−
1 = 7 nodes, and hence a total of 12 × 7 = 84 different ways of
generating fractions are counted above. In our simulation method
we follow the above combinatorial method to generate the
different fractions.

Lemma 2: For a maximum of b balanced steps and w weighted steps,
the upper bound on the total number of ways to generate fractions is
given by

b+ w
w

( )
× 2w × (2b+w − 1).

Proof: Note that the Bs and Ws can be written in

b+ w
w

( )

ways. Each of the Ws may be written in two ways. Hence the total
number of sequences is actually

b+ w
w

( )
× 2w.

Finally, for each sequence of length b +w, the number of ways
fractions can be generated is equal to the number of nodes present
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 3, pp. 119–127
& The Institution of Engineering and Technology 2016
in a CBT with height b + w–1, which is (2b+w− 1). Hence the
result. □

Note that not all these fractions generated above are unique and
obviously the same fraction can be generated in multiple ways.
However, not all the ways to generate fractions counted by the
above lemma are unique. For example, if in Fig. 3, we consider
the sequence BW2W1 instead, the fractions generated at level 0 and
at level 1 of the CBT together with the steps to generate them
would have been the same.

Now, consider Fig. 4a. A careful examination shows that the total
number of unique ways of generating fractions for the three step case
is 1 (at level-0) + 4 (at level-1) + 16 (at level-2) = 21. Similarly in
Fig. 4b, the total number of ways is 1 (at level-0) + 6 (at level-1) +
16 (at level-2) = 23. Moreover in Fig. 4c, the number is 1 (at
level-0) + 6 (at level-1) + 16 (at level-2) = 23. Hence the sumtotal
number of fraction generation methods = 21 + 23 + 23 = 67.
Obviously, since the number of unique fractions is 17, these 67
methods contain different ways to generate the same fraction.

However, we list the step sequences for generating 17 unique
fractions with D = 18 in Table 1. A typical mix-split step written
as (2:1)-0-18-6 means two droplets having numerator 0 is mixed
with one droplet with numerator 18 to generate a new
concentration with numerator 6, the denominator is generally clear
from the context. Since the derivation of a closed form for the
number of unique ways to generate fractions appears to be difficult
in general, we present the following lemma instead.

Lemma 3: A lower bound on the number of ways the fractions can be
generated is given by

b+ w
w

( )
× 2w × 2b+w−1.

Proof: The total number of ways to generate fractions for which all b
+ w mix-split steps are used is given by

b+ w
w

( )
× 2w × 2b+w−1,

and they are all unique. □

For our small example, the above result gives a lower bound of 3 ×
4 × 4 = 48, which is <67.

Our preprocessing phase constructs a table that contains the best
possible sequences for generating a fraction with respect to each of
the five optimising criteria stated before. For the small example
with D = 18, coincidentally for each of the 17 fractions, the
optimal sequence turned out to be the same. We report these 17
123
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Table 2 Optimal step sequences for generating 84/144

Steps Wt. steps Waste Input sample Input buffer Sequences

Step 1 Step 2 Step 3 Step 4

3 1 3 3 2 (1:1)-0-144-72 (2:1)-72-144-96 (1:1)-72-96-84
4 1 2 2 2 (1:2)-0-144-96 (1:1)-0-96-48 (1:1)-48-96-72 (1:1)-72-96-84
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b = 4 and w = 2, then D = 24 × 32 = 144. For generating a fraction
with numerator 84, we found two different sequences shown in
Table 2 being better than all other sequences. The first one
optimises the first criterion, that is, the total number of steps and
the second one optimises the third and fourth criteria, that is, the
number of waste droplets and buffers. However, from the point of
second and fifth criteria both the sequences perform equally. In
our methodology, we have followed certain convention for tie
resolution, if any.

The mix-split step sequence for generating Ct = 5/18 from buffer
(0/18) and sample (18/18) is shown in Fig. 5. The required
sequence is taken from 8th, 9th and 10th columns of the 5th row
of Table 1.
Table 3 Experimental results for the preprocessing phase

Trials B W T Denom. D

Up

1 1 2 3 18
2 4 2 6 144
3 8 2 10 2304 18
4 7 3 10 3456 98
5 6 4 10 5184 3,4
6 9 2 11 4608 45
7 8 3 11 6912 2,7
8 7 4 11 10,368 10,
9 9 3 12 13,824 7,2
10 8 4 12 20,736 32,
11 11 2 13 18,432 2,5
12 12 2 14 36,864 5,9

Fig. 5 Weighted mix-split steps for generating target CF = 5/18 from buffer
(0/18) and 100% sample (18/18)
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Let us consider another example with b = 11 and w = 4. Hence,
denominator = 211 × 34 = 165, 888. Now

15
2

( )
= 1365.

We multiply 1365 BW-sequences with 2w = 24 weighted
arrangements to get 1365 × 16 = 21, 840. Using Lemmas 2 and 3,
we respectively get the upper and lower bounds as 21, 840 × (215

− 1) = 715, 653, 120 and 21, 840 × 214 = 357, 826, 560.

5.2 Generation of optimal step-sequences

We have designed a simulation engine that keeps on generating a
new fraction in each step by performing a mix-split step within a
particular range. It iteratively tries out all possible ranges of all
possible sequences. After generating a new fraction, it calls a
procedure that reports the five different parameters such as number
of steps, number of weighted steps, number of waste droplets. We
keep on updating the look-up table to store the best solution so far
obtained.

However, the decision is not taken by the comparison of a single
parameter. A hierarchical comparison of a maximum of five
parameters is done, in case there are ties. As for example, if we
are choosing an optimal sequence for minimising waste droplets,
we first compare the number of waste droplets, then in case of a
tie, compare the number of weighted steps as they are expensive.
In case of another tie, we compare the number of total steps, then
in case of tie here also, we compare the fourth parameter and then
the fifth. When all possible fraction-compositions are exhausted,
the final table that lists the optimal solutions is constructed.

Note that for a particular fraction, the number of possible ways a
fraction can be optimally composed is at most five, if they are all
different for each parameter. However, such cases rarely arise. As
in Table 3, we find that the entry in the first row, 8th column is
17, that is, D− 1, since for each fraction the same sequence turns
out to be the optimal one with respect to all five parameters.
However in other rows, the entries are much more than that but
still far less than 5 × (D− 1). Note that since the entries in the 7th
column are far smaller than the number of ways tried out we can
store the results of our simulation for future use.

The CPU time reported in the last column shows that these
simulations are not very expensive to perform off-line. The
simulation engine has been performed on a Intel (R) Core (TM)
No. of ways to generate fractions Time hh:mm:ss

per B. Lower B. Optimal

84 48 17 00:00:00
3780 1920 161 00:00:00
4,140 92,160 3029 00:00:04
2,080 491,520 4879 00:00:37
37,280 1,720,320 7876 00:03:35
0,340 225,280 6249 00:00:11
02,040 1,351,680 10,093 00:02:00
808,160 5,406,720 16,353 00:12:22
07,200 3,604,480 20,602 00:05:51
432,400 16,220,160 33,833 00:49:53
55,592 1,277,952 25,786 00:00:49
63,412 2,981,888 52,013 00:04:57
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Table 4 Comparative results of balanced, that is, (1:1) and weighted schemes

B +W steps
(target CFs)

Total step
cost

Avg. step
count

% Savings in
steps

Avg. sample
count

Avg. buffer
count

Avg. waste
count

Avg. waste/(avg.
sample + avg. buffer)

% savings in
waste

10B + 0W (1023) 10 × 1 = 10 9.01 6.22 3.51 3.51 5.02 0.72 13.89
7B + 2W (1151) 7 × 1 + 2 ×

1.5 = 10
8.45 3.8 3.8 4.71 0.62

11B + 0W (2047) 11 × 1 = 11 10.01 14.79 3.78 3.78 5.57 0.74 17.57
7B + 3W (3455) 7 × 1 + 3 ×

1.5 = 11.5
8.53 3.39 3.39 4.15 0.61

12B + 0W (4095) 12 × 1 = 12 11 22.45 4.06 4.06 6.12 0.75 18.67
7B + 3W (3455) 7 × 1 + 3 ×

1.5 = 11.5
8.53 3.39 3.39 4.15 0.61

12B + 0W (4095) 12 × 1 = 12 11 22.55 4.06 4.06 6.12 0.75 18.67
6B + 4W (5183) 6 × 1 + 4 ×

1.5 = 12
8.52 3.54 3.54 4.32 0.61

8B + 0W (255) 8 × 1 = 8 7.03 28.73 2.98 2.98 3.96 0.66 16.67
1B + 5W (485) 1 + 5 × 1.5 =

8.5
5.01 3.32 3.32 3.63 0.55

9B + 0W (511) 9 × 1 = 9 8.02 37.53 3.24 3.24 4.49 0.69 20.29
1B + 5W (485) 1 + 5 × 1.5 =

8.5
5.01 3.32 3.32 3.63 0.55

Avg. % Savings 22.05 17.63
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5.3 Comparative study

We have compared the results of our simulation for four different
weighted schemes with balanced schemes having comparable
denominators, as shown in Table 4. We compared them in terms
of total step cost, average step count, % savings in steps, average
sample count, average buffer count, average waste count and%
savings in waste. Note that the step cost (mixing time) for (1:1)
balanced mixing/splitting is considered as 1.0, whereas that for
Fig. 6 Comparison of optimisation Parameters for (7B + 2W) with (10B + 0W)

IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 3, pp. 119–127
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(1:2) weighted mixing/splitting is considered as 1.5, as in the
WD case three droplets are manipulated in contrast to two
droplets for the balanced case. In the first part of 1st row of
Table 4, we have used 10B + 0W, that is, b = 10 and w = 0 giving
D = 210 × 30 = 1024. To obtain a comparable precision, in the
second part of the same row, for 7B + 2W, we have used b = 7
and w = 2 generating D = 27 × 32 = 1152. We have compared the
optimisation parameters for 1023 target CFs in balanced and
1151 target CFs in WD dilution methods and the corresponding
plots are shown in Fig. 6. It is observed that the total step-cost
for both balanced and WD schemes are the same, that is, 10 × 1
= 10 for balanced and 7 × 1 + 2 × 1.5 = 10 for weighted. On the
basis of average-step-count 9.01 and 8.45 (3rd column of 1st
125
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Fig. 7 Comparison of optimisation Parameters for (7B + 3W) with (12B + 0W)
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100 = 6.22.

We utilise the average values of sample, buffer and waste count
for both balanced and weighted models to get {5.02/(2× 3.51)} =
0.72 and {4.71/(2× 3.8)} = 0.62 respectively (8th column of
1st row of Table 4). WD reduces the waste significantly compared
with the balanced technique giving a % savings of
{(0.72− 0.62)/0.72} × 100 = 13.89 (shown in the 9th column of
1st row of Table 4).

Similarly, we have carried out the comparative analysis for (11B +
0W with 7B + 3W ), (12B + 0W with 7B + 3W ), (12B + 0W with 6B +
4W ), (8B + 0W with 1B + 5W ) and (9B + 0W with 1B + 5W ). The
results are captured in the Table 4. In the first part of the 3rd row
of the same table, we have used 12B + 0W, that is, b = 12 and w =
0 creating D = 212 × 30 = 4096. In contrast, in the same row, for
7B + 3W, we can generate D = 27 × 33 = 3456 with b = 7 and w = 3.
Optimisation parameters for 4095 target CFs in balanced and 3455
target CFs in WD dilution schemes are compared and the
corresponding performance plots are shown in Fig. 7. Note that in
both Figs. 6 and 7, the bars shown in brown colour are shorter
towards the right in each of the plots, that is, for each criterion, the
values for WD scheme are relatively smaller compared with the
balanced scheme on an overall basis.

Note that the number of sequential mix-split steps used in the
mixing algorithm determines the accuracy of the target
concentration that can be achieved on-chip. It has been observed
that for the (1:1) mixing model, 9 or 10 steps provide sufficient
accuracy in target concentration (if n denotes the number of (1:1)
mix-split steps, the maximum error in target concentration cannot
exceed (1/2n) [14–16]. Thus, in our experiments, we have used at
126
most 12 balanced (1:1) mix-split steps and compared the results
with the WD-model.
6 Conclusion

We have investigated the problem of diluting a sample using a
generalised (weighted) mix-split model. Our analysis shows that
by introducing a few (1:2) mix-split steps along with the
traditional (1:1) steps in mixing operations, the performance of
dilution algorithms can be improved. We also present an
architecture of electrode layout that can be used to implement
weighted mix-split operations. With certain offline preprocessing,
the optimal mix-split steps can be computed a priori, and stored
as small look-up tables. This table can later be used to generate
the required actuation sequence when dilution of a sample is
needed in real time. As an open problem, further generalisation of
the weighted model may be investigated along with the
development of appropriate on-chip sample preparation algorithms
that will produce an optimum mix-split sequence.
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