
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

17

Consistency between Use Case, Sequence and Timing

Diagram for Real Time Software Systems

Rumpa Hazra
Heritage Institute of Technology

Kolkata, India

Shouvik Dey
Cognizant Technology Solutions

Kolkata, India

ABSTRACT

Modeling of real time software systems (RTSS) consist of

different components with UML 2.0 leads to a design model

using various diagrams. To get a consistent model, a

consistency concept for different diagrams type is needed that

takes into account real time constraints. Ensuring consistency

of The Unified Modeling Language (UML) model is very

crucial as it is effect to the quality of UML model and directly

gives impact to good implementation of Information System.

Although there are increasing researches on consistency

management, there is still lack of researches of consistency

driven by Use Case. With this motivation, in this paper, we

have proposed few consistency rules between Use Case,

Sequence and Timing diagrams which focus on the

establishment of timing constraints. Elements of each diagram

involved in the proposed rules are formalized. Using an

example, we show how the diagrams fulfill our proposed

consistency rules.

Keywords

Real time software systems, UML, Consistency, Real time

constraints.

1. INTRODUCTION
Real Time Systems are now omnipresent in modern societies

in various domains such as avionics, control of nuclear power

stations, multimedia communications, robotics, air-traffic

control, process control, and embedded systems. Developing a

real time embedded system is a sophisticated and complex

task.

The Unified Modeling Language (UML) is a graphical

modeling language for visualising, specifying, constructing

and documenting the artifacts of software systems. UML is

widely used to express general-purpose software design

models. It encourages the use of automated tools that facilitate

the development process from analysis through coding. This

is particularly true for real time embedded systems, whose

behavioural aspects can often be described via UML. It is

therefore interesting to consider how well UML is adapted to

the real time context. One important feature of UML stems

from its built-in extensibility mechanisms: stereotypes, tag

values and profiles. These allow adapting UML to fit the

specifics of particular domains or to support a specific

analysis.

Since the different stages of Real Time software life cycle

model are correlated and represent common aspects there is a

need to check for inconsistencies among the related models.

We want to define a set of consistency rules which are

necessary as well as sufficient to ensure consistency within

the design models.

In general consistency within a specification is mandatory

requirements because it is a prerequisite for the correct

execution of the system specified in different parts.

Consistency is the property that different parts of a

specification are compatible with each other and not

contradictory. The problem of consistency arises in cases

where a specification consists of different parts, each part

concentrating on a specific view of the system. Then it has to

be ensured that the overall specification gained from all parts

does not contain consistency errors.

Consistency is a state in which two or more overlapping

elements of different software models make assertions about

the aspects of the system they describe which are jointly

satisfiable [3]. It is one of the attributes used in measuring the

quality of Unified Modeling Language (UML) model [4].

According to [3; 5] there are three (3) main activities in model

consistency management. They are consistency specification,

inconsistency detection and inconsistency handling.

Consistency rules which must be respected by different

diagrams in order for them to be consistent are specified first.

If the consistency rules are not fulfilled, inconsistencies were

aroused and they should be detected and handled. Even

though, there are increasing research in consistency between

diagrams as reviewed by Lucas, Molina and Toval [6], there

are still lacks of researches of consistency driven by Use

Case. In famous system development methodologies such as

ICONIX and Unified Process (UP), Use Cases provide the

foundation for defining functional requirements and design

throughout system development [7; 8]. The importance of Use

Case can be seen in [9] as it is second ranked diagram used by

UML practitioners.

UML, being visual in nature, is easy to understand and

communicate. UML as a real time modeling language has

some limitations. It basically provides a lot of syntax, but not

enough semantics and it lacks the rigor of formal modeling

languages. Formalization of UML diagrams is now a

dominant area of research. In this paper we described the

formalization of the elements of Use Case Sequence and

Timing diagrams which represent dynamic and behavioral

aspects of a system. Then, the consistency rules have been

proposed by analyzing the interrelationships among those

diagrams so that they together represent a coherent design.

The paper is structured as follows. In Section 2 we provide the

background of related works. Section 3 provides a brief

overview of the actual scope of this work. Section 4 presents

formalization of the elements of Use Case, Sequence and

Timing diagrams. In this section, we also propose few

consistency rules. Section 5 provides a case study of UML

model for ATM System. In section 6, we present our

conclusions.

2. RELATED WORK
This section presents a review of some of the research works

that have been done in the area of consistency of UML

designs for Real Time Software Systems. An algorithmic

approach to a consistency check between UML Sequence and

State diagrams is described in [1] while [14] proposes a

declarative approach using process algebra CSP for

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

18

consistency checking between sequence and state charts. In

[2] an approach for automated consistency checking named

VIEWINTEGRA has been developed.

Consistency between use case and activity diagram were

proposed by Shinkawa [10], Sapna et al. [12] and Chanda et

al. [13]. Shinkawa [10] specify consistency between use case,

activity, sequence and state chart diagram using Colored Petri

Net (CPN). He proposes that a use case may have at least an

activity diagram [10]. He also defines use case, action and

execution occurrences as transitions. While Sapna et al. [12]

define elements of use case, activity and sequence diagrams

using schema table. But the definitions just limited to

elements of use case, actor, activity, message and object. A

use case may have an activity diagram [12], each actor in use

case diagram is matched to a class in activity diagram [12].

They define that each object and its messages in sequence

diagram correspond to a class and its method in class diagram.

They proposed two (2) consistency rules between use case

and sequence diagram. OCL is used to express the consistency

rules. A use case may have different flows of activities or

scenarios [8]. A scenario is described by a sequence diagram.

Chanda et al. [13] express elements of use case, activity and

sequence diagram as CFG. They define an action/ activity in

activity diagram as an event of a use case in use case diagram.

The formal syntax of each diagram is then used to reason the

rules using CFG.

Research on consistency between use case and class diagram

are most interest to researchers [11; 12]. Fryz et al. [11]

consider a use case diagram as user requirements and they

described the diagram as a graph. They have defined

consistency between use case and class diagram using graphs.

Elements defined in consistency rules by Sapna et al. [12] and

Chanda et al. [13] are not follow abstract syntax standardize

by Object Management Group (OMG)[15]. It is an advantage

to use the standard with regard to apply any proposed

approach in industrial software development [6].

The semantics presented in [17] captures the consistency

between sequence diagram with class diagram and state

diagram. This approach may be useful to develop the model

consistent checking functions in UML CASE tools and also to

reason about the correctness of a design model with respect to

a requirement model. With respect to timing constraints in

sequence diagram, Li et al. [16] describe an algorithm based

on linear programming that analyzes whether several timing

constraints within a sequence diagram are consistent with

each other. They extend their approach to compositions of

sequence diagrams.

3. SCOPE OF WORK
In this paper we propose a formal definition of Use Case,

Sequence and Timing diagrams – the three most commonly

used UML 2.0 models. Based on the UML 2.0 standards, we

have defined several rules to highlight the inter-diagram

consistency based on the common elements present. Using an

example of UML 2.0 model which consists of the three

diagrams, we show how the diagrams fulfill our proposed

consistency rules. Finally, the elements involved in the

consistency rules are detected and formally reasoned.

4. PROPOSED WORK
In this section, we describe the formalization of the elements

of Use Case, Sequence and Timing diagrams. Further, the

consistency rules are shown.

Definition 1. A model (or UML model) is defined as a set

Model = {UCD, SEQD, TIMED},

Where

UCD = {ucdi|1 ≤ i ≤n} is finite set of Use Case diagrams.

SEQD = {SeqDi|1 ≤ i ≤n} is finite set of Sequence diagrams

for Use Case.

TIMED = {TimeDi|1 ≤ i ≤n} is finite set of Timing diagrams

for SEQD.

Definition 1 describes a UML model that consists of at least

one Use Case diagram, one Sequence diagram and one

Timing diagram.

4.1 Formalization of UCD
Definition 2. Use Case Diagram (UCD) is defined as a set

UCD = {A, UC, R, CO},

Where

A is a finite set of actors where A = {ai|1 ≤ i ≤ n},

UC is a finite set of Use Cases where UC = {uCi|1 ≤ i ≤ n},

R is a finite set of relationships where R = {Assoc, Include,

Extend, GenUC, GenAc},

CO is a finite set of constraints for UCD where CO = {COi|1

≤ i ≤ n},

COi is a finite set of constraints for a Use Case uCi where COi

= {COij|1 ≤ i ≤ n and 1 ≤ j ≤ n}.

4.2 Formalization of SEQD
Definition 3: SeqDuCi is defined as a finite set of Sequence

diagrams corresponding to a Use Case uCi.

SeqDuCi = {SeqDuCi1, SeqDuCi2,.........., SeqDuCin| uC ∈ UC}

where SeqDuCi ∈ SEQD

Definition 4: SeqDuCin is defined as a tuple

SeqDuCin = {Ps, E, V, l, O, C, S}

where

 Ps is a set of lifelines denoting participants involved

in an interaction where Ps = {psi| 1≤ i ≤ n}.

 E is a set of events where each event corresponds to

sending or receiving a message where E = {ei |1≤ i ≤

n}.

 V is a finite set of edges. V is defined as a link

between two Ps. So V can be represented as {(e,e’) |

e,e’ ∈ E and e’≠ e}. V = {vi| 1≤ i ≤ n}.

 l is a labeling function which assigns each v ∈ V a

message name m with m = l (v).

 O is a function which maps each e ∈ E to the

participant it belongs to.

 C is a set of Boolean of form t(e) – t(e’) ≤ d which

represents the timing constraints enforced on

SeqDuCin.

 S is a finite set of states to which participant goes

where S = {si |1≤ i ≤ n}.

There is an ordering relation over E in a participant. All

events related to one participant are timely ordered. For any

two distinct events ei and ej, let ei < ej denote that ej occurs

after ei if and only if (e,e’) ∈ V.

We define NSeqD to be the set of all message names occurring

in the Sequence diagram and denote NSeqD,p set of all message

names sent or received by the participant p ∈ Ps of the

Sequence diagram. We define NSeqDstate,p set of all states

associated with the participant p ∈ Ps of the Sequence

diagram.

We denote the event of receiving message mi as r(mi) and the

event of sending message mi as s(mi).

4.3 Formalization of TIMED
Definition 5: TimeDin describes a Timing diagram

corresponding to a Sequence diagram SeqDuCin.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

19

TimeDin is defined as a tuple,

TimeDin = {Pt, M, D, S},

where

 Pt is a set of lifelines denoting participants involved

in an interaction where Pt = {pti | 1≤ i ≤ n}.

 M is a set of messages transferred between two pti

where M = {mi | 1≤ i ≤ n}.

 D is the finite set of constraints where D = {di | 1≤ i

≤ n}.

 S is a finite set of states in the lifeline of Pt where S

= {si |1≤ i ≤ n}.

We define NtimeD to be the set of all message names occurring

in the Timing diagram and denote NTimeD,p set of all message

names sent or received by the participant p ∈ Pt of the Timing

diagram. We define NTimeDstate,p as a set of all states associated

with the participant p ∈ Pt of the Timing diagram.

4.4 Consistency Rules between Use Case

and Sequence Diagrams
Rule 1: For each Use Case there exists at least one Sequence

diagram.

Rule 2: Each actor associated with a Use Case will appear as

a participant in the corresponding Sequence diagram.

Rule 3: Let UCD = {A, UC, R, CO} and SeqDuCin. = {Ps, E,

V, l, O, C, S} be a sequence diagram corresponding to Use

Case uCi ∈ UC. For any Use Case uCi ∈ UC, the set of

constraints COi ∈ CO, associated with uCi is the subset of the

set of constraints in SeqDuCin. COi C.

4.5 Consistency Rules between Sequence

and Timing Diagrams
Rule 4: For each sequence diagram there exists one Timing

diagram.

Rule 5: Participants associated with a Timing diagram are a

subset of the participants which appear in the corresponding

sequence diagram. pt ps where pt ∈ TimeDin and ps ∈

SeqDuCin.

Rule 6: Let SeqDuCin = {Ps, E, V, l, O, C, S} be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram.

p ∈ Pt, the set of messages names in TimeDin (NTimeD,p) is a

subset of the set of messages in SeqDuCin (NSeqD,p). NTimeD,p

NSeqD,p.

Rule 7: Let SeqDuCin = {Ps, E, V, l, O, C, S}be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram.

p ∈ Pt, the set of states in TimeDin (NTimeDstate,p) is same as

the set of states in SeqDuCin (NSeqDstate,p). NTimeDstate,p =

NSeqDstate,p.

Definition 5: The Sequence of message events induced by a

sequence diagram SeqDuCin = {Ps, E, V, l, O, C, S} related to

one participant p ∈ Ps between two events e and d, where e, d

∈ E is the ordered sequence of message events between these

two events:

Sequence (e,d) = <ai> such that following hold

 O(ai) = p, all events are associated to the participant

p.

 ai = r(m) or ai = s(m) with m = label (v) for one v ∈

V, all events are send or receive events of messages

of the sequence diagram.

 e ≤ ai ≤ d and i ≤ j implies ai ≤ aj, the sequence is

ordered.

Rule 8: Let SeqDuCin = {Ps, E, V, l, O, C, S}be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram.

The sequence of messages generated by any participant in

TimeDin is a subsequence of a sequence of message events

related to the corresponding participant between the first and

the last event of that participant in SeqDuCin.

Rule 9: Let SeqDuCin = {Ps, E, V, l, O, C, S} be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram.

Suppose in SeqDuCin, the sequence of states associated to any

participant p ∈ Ps is <s1, s2,..,sn>, then in TimeDin, the same

sequence of states will be related to the corresponding

participant p ∈ Pt.

Rule 10: SeqDuCin = {Ps, E, V, l, O, C, S} be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram. In

SeqDuCin, if participant A enters into state S1 at time TA1 and

remains in that state until time TA2 then in the corresponding

TimeDin, participant A changes its state to S1 at time TA1and

duration of that state will be (TA2-TA1) time unit.

Sometimes, this duration is specified by some constraints.

Rule 11: Let SeqDuCin = {Ps, E, V, l, O, C, S} be a sequence

diagram and TimeDin = {Pt, M, D, S} be a Timing diagram. If

any two messages in SeqDuCin are associated with duration

constraint such as d, then in TimeDin, the corresponding

messages must be related to same duration constraint (such as

d). Suppose in SeqDuCin, the sequence of states associated to

any participant p ∈ Ps between these two messages are <s1,

s2,..,sn>, then in TimeDin, same sequence of states will be

related to the corresponding participant p ∈ Pt.

5. RESULT AND DISCUSSION
This section shows an example of UML model for ATM

System. The model consists of UML 2.0 Use Case, Sequence

and Timing Diagrams. The elements of each diagram are

described and how the diagrams fulfilled our proposed

consistency rules are also shown.

5.1 UML Model for ATM System
The requirements of ATM system are captured and visualized

using a Use Case diagram as shown in Figure 1. The

functionalities of each Use Case in Figure 1 are then modelled

using at least one Sequence diagram. In order to show how

UML diagrams fulfilled our proposed consistency rules, we

just show one Sequence (Figure 2) and one Timing diagram

(Figure 3) for Withdrawal Use Case.

Based on Definition 1, we get

ModelATM = {ucdATM, SeqDwithdrawal0, TimeD withdrawal0}.

5.2 UML Use Case Diagram for ATM

System
Figure 1 shows a Use Case diagram for ATM System.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

20

Fig 1: Use Case Diagram for ATM System.

 Based on Definition 2, we have the following

ucdATM = (AATM, UCATM, RATM, COATM)

ucdATM ∈ UCDATM

 Two actors are present in Use Case ATM. They are

customer and Bank, i.e.,

Based on Definition 2, we have the following

AATM = {aCustomer, aBank}

 Six Use Cases named Withdrawal, Request Statement,

Balance Inquiry, Deposit, Transaction, Identify User, i.e.,

Based on Definition 2, we have the following

UCATM = {useCaseWithdrawal, useCaseRequest Statement,

useCaseBalance Inquiry, useCaseDeposit,

 useCase Transaction, useCaseIdentify User }

 Based on Definition 2, we have the following

RATM = {AssocATM, IncludeATM, GenUCATM}.

In the diagram, there is no generalization of actors and

<<extend>> relationship between Use Cases.

 Based on Definition 2, we have the following

COATM = {Duration between amount entered and cash

dispense must be less than 2d units, Duration between

Prompt PIN and PIN entered must be less than 2d units,

Time out error is d unit}.

5.3 UML Sequence Diagram for ATM

System
Figure 2 shows a Sequence diagram (SeqDWithdrawal) for

Withdrawal Use Case depicted in figure 1.

 Based on Definition 3, we have the following

SeqDuCWithdrawal = {SeqDWithdrawal}

 Based on Definition 4, we have the following

SeqDWithdrawal = {PsWithdrawal, EWithdrawal, VWithdrawal,

lWithdrawal,CWithdrawal, SWithdrawal}

 Three participants are present in Sequence diagram

SeqDWithdrawal

PsWithdrawal = {User, ATM_Sys, Bank}.

 Some elements of EWithdrawal are

s(Insert Card), r(Insert Card), s(Enter PIN), r(Enter PIN),

s(Verify Account), r(Verify Account) etc.

 Some elements of CWithdrawal are

{t(r(PIN Prompt)) – t(s(Enter PIN)) <d}, {t(s(Enter

Amount)) - t(r(Dispense Cash)) <2d} etc.

 SWithdrawal = {Idle, Processing, Waiting}.

 Some messages are

Insert Card, Enter PIN, PIN Prompt, Verify Account,

Enter Amount, Dispense Cash etc.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

21

Fig 2: Sequence Diagram for Withdrawal Use Case

5.4 UML Timing Diagram for ATM

System
Figure 3 shows a Timing diagram (TimeDWithdrawal) for

Sequence diagram SeqDWithdrawal.

 Based on Definition 5, we have the following

TimeDWithdrawal = {PtWithdrawal, MWithdrawal, DWithdrawal,

SWithdrawal}

 Three participants are present in Timing diagram

TimeDWithdrawal

PtWithdrawal = {User, ATM_Sys, Bank}.

 Some elements of MWithdrawal are

 Insert Card, Enter PIN, PIN Prompt, Verify Account,

Enter Amount, Dispense Cash etc.

 Some elements of DWithdrawal are

{t(r(PIN Prompt)) – t(s(Enter PIN)) <d}, {t(s(Enter

Amount)) - t(r(Dispense Cash)) <2d} etc.

 SWithdrawal = {Idle, Processing, Waiting}.

5.5 Consistency Rules between Use Case

and Sequence Diagrams
a. For Withdrawal Use Case in Fig 1, there is a

Sequence diagram in Figure 2. Fig 1 and 2 satisfy

the Rule 1.

b. According to Rule 2, User and bank of use case

diagram in Fig 1 appear as participants in Sequence

diagram in Fig 2.

c. Withdrawal Use Case in Fig 1 is associated with

some constraints which are reflected in Fig 2.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

22

Fig 3: Timing Diagram corresponding to the Sequence Diagram for Withdrawal Use Case

5.6 Consistency Rules between Sequence

and Timing Diagrams
d. Fig 2 and 3 satisfy the Rule 4.

e. According to Rule 5, we require that the number of

participants in a Timing diagram is a subset of

participants appears in corresponding sequence

diagram. With respect to our example, both

diagrams (Fig 1 and Fig 2) contain three

participants.

f. According to Rule 6, we require that the set of

message names associated to any participant of the

Timing Diagram to be a subset of the set of

messages related to the corresponding participant in

the Sequence diagram.

With respect to our example, the set of message

names of the Timing diagram associated to

participant bank in Fig 3 is {Verify Account,

Account Ok, Verify Amount, Sufficient Amount}

which is same as the set of messages of the

corresponding participant in the Sequence diagram.

g. According to Rule 7, we require that the set of

states associated to any participant of the Timing

Diagram is same as the set of states related to the

corresponding participant in the Sequence diagram.

With respect to our example, the set of states of the

Timing diagram associated to participant User in

Fig 3 is {Idle, Processing, Waiting} which is same

as the set of states of the corresponding participant

in the Sequence diagram.

h. According to Rule 8, we require that the sequence

of messages generated by any participant in

TimeDin is a subsequence of a sequence of message

events generated by the corresponding participant in

SeqDuCin. We can say that sequence of messages is

same in both diagrams.

In Fig 2, sequence of messages of the Sequence

diagram related to participant User is <s(Insert

Card), r(PIN Prompt), s(Enter PIN), r(Display

Menu), s(Withdrawal Option Chosen), r(Amount

Prompt), s(Enter Amout), r(Dispense Cash)>. In

Figure 3, it is noticed that User is associated with

the same sequence of messages.

i. According to Rule 9, we require that sequence of

states is same in both diagrams.

With respect to our example, the sequence of states

of the Timing diagram associated to participant

ATM_Sys in Fig 3 is {Idle, Processing, Waiting,

Processing, Waiting, Processing} which is same as

the sequence of states of the corresponding

participant in the Sequence diagram.

j. Rule 10 requires that if any participant p ∈ Ps enters

into state S1 at time T1 and exits that state at time

T2 then in the Timing diagram, corresponding

participant p ∈ Pt changes its state to S1 at time

T1and duration of that state will be (T2-T1) time

unit.

In Fig 2, participant ATM_Sys enters into the

Processing state at time t1 and exits that state at

time t2. We use the new metaclass in UML 2.0,

TimeObservationAction, to know when a

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

23

participant changes its state. A time observation

action is an action that, when executed, returns the

current value of time in the context in which it is

executing. It is depicted with the keyword “now”. In

Figure 3, corresponding participant remains in that

state (Processing) for the duration (t2-t1) time unit.

k. According to Rule 11, first we require that any two

messages are associated with same duration

constraint in both the diagrams. Next we require

that the sequence of states related to any participant

is the same in both diagrams between these two

messages.

In Fig 2, there is a duration constraint {< d units}

between two messages Enter Amount and Dispense

Cash. In Sequence diagram, participant ATM_Sys is

associated with sequence of states {Processing,

Waiting, Processing} between these two messages.

In Timing diagram same scenario is repeated.

6. CONCLUSION
The increasing complexity of now-a-days ubiquitous Real

Time Systems requires an adequate modeling language. UML,

which is a widely used visual object oriented modeling

language, has proved to be effective and suitable for Real

Time Systems. However UML is semiformal in nature and

hence ambiguities may arise in design specifications among

models that represent overlapping but different aspects of the

same system. Consistency between the diagrams is important

for the successful implementation of a model, especially when

existing components have to be integrated. Ensuring

consistency among different models representing different

phases of its life cycle are of utmost importance.

In this paper we propose formal definitions for UML 2.0 Use

Case, Sequence & Timing diagrams, the three widely used

models which represent dynamic and behavioral aspects. In

this paper, a set of consistency rules are defined which

focuses on timing aspects of Real Time Software Systems.

We have considered ATM system as our example and our

approach has been applied to this case study and our proposed

consistency rules are satisfied.

7. REFERENCES
[1] Boris Litvak, S. T. and Yehudai. A Behavioral

consistency validation of uml diagrams. First

International Conference on Software Engineering and

Formal Methods (SEFM’03), Brisbane, Australia, page

pp 118, September 22-27 2003.

[2] Egyed, A. Scalable consistency checking between

diagrams-the view integra approach. 16th IEEE

International Conference on Automated Software

Engineering (ASE’01), San Diego, California, November

26-29 2001.

[3] G. Spanoudakis, & A. Zisman. Inconsistency

Management in Software Engineering: Survey and Open

Research Issues, Handbook of Software Engineering and

Knowledge Engineering, ed., World Scientific Pub. Co,

New Jersey, 2001.

[4] Nugroho, & M. R. V. Chaudron. A survey into the rigor

of UML use and its perceived impact on quality and

productivity, in: Proceedings of the Second ACM-IEEE

international symposium on Empirical software

engineering and measurement, 2008, pp. 90-99.

[5] Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O.

Muliawan, S. Castro, et al. (2009). Towards a Unifying

Conceptual Framework for Inconsistency Management A

F. J. Lucas, F. Molina, A. Toval.: A Systematic Review

of UML Model Consistency Management, Information

and Software Technology, 51, 2009, 1631-1645.

[6] F. J. Lucas, F. Molina, A. Toval. A Systematic Review of

UML Model Consistency Management, Information and

Software Technology, 51, 2009, 1631-1645.

[7] D. Rosenberg, M. Stephens. Use Case Driven Object

Modeling with UML: Theory and Practice, A press,

2007.

[8] J. W. Satzinger, R. B. Jackson, S. D. Burd. Object-

Oriented Analysis and Design with the Unified Process,

Thomson Course Technology, 2005.

[9] B. Dobing, J. Parsons. Dimensions of UML Diagram

Use: A Survey of practitioners, Journal of Database

Management, 19, (1), 2008, 18.

[10] Y. Shinkawa.: Inter-Model Consistency in UML Based

on CPN Formalism, in: 13th Asia Pacific Software

Engineering Conference (APSEC '06) 2006, pp. 414-418.

[11] L. Fryz, & L. Kotulski. Assurance of System

Consistency during Independent Creation of UML

Diagrams, in: 2nd International Conference on

Dependability of Computer Systems, 2007 (DepCoS-

RELCOMEX '07), 2007, pp. 51-58.

[12] P. G. Sapna, H. Mohanty. Ensuring Consistency in

Relational Repository of UML Models, in: 10th

International Conference on Information Technology

(ICIT 2007), 2007, pp. 217-222.

[13] J. Chanda, A. Kanjilal, S. Sengupta, S.

Bhattacharya.Traceability of Requirements and

Consistency Verification of UML UseCase, Activity and

Class diagram: A Formal Approach, in: International

Conference on Methods and Models in Computer

Science 2009 (ICM2CS), 2009, pp. 1-4.

[14] Küster, J. M. ,Stehr, J. Towards explicit behavioral

consistency concepts in the uml. Second International

Workshop on Scenarios and State Machines: Models,

Algorithms and Tools, Portland,Oregon, USA, May 3

2003.

[15] Object Management Group (OMG), OMG Unified

Modeling LanguageTM (OMG UML), Superstructure

Version 2.3. Retrieved from:

<http://www.omg.org/spec/UML/2.3>, 2010.

[16] Xuandong Li , Johan Lilius.: Timing analysis of UML

sequence diagrams. In Robert France and Bernhard

Rumpe, editors, UML’99 - The Unified Modeling

Language. Beyond the Standard. Second International

Conference, Fort Collins, CO, USA, October 28-30,

1999, Proceedings, volume 1723 of LNCS, Pages 661-

674, Springer, 1999.

[17] Xiaoshan Li, Zhiming Liu, He Jifeng.: A Formal

Semantics of UML Sequence Diagram. Australian

Software Engineering Conference (ASWEC'04),

Melbourne, Australia, April 13-16, 2004.

IJCATM : www.ijcaonline.org

